STABILITY ANALYSIS FOR THE SLOW TRAVELING PULSE OF THE FITZHUGH-NAGUMO SYSTEM

被引:42
|
作者
FLORES, G
机构
关键词
NERVE CONDUCTION; TRAVELING WAVE; LINEARIZED EQUATION; SPECTRUM; STABILITY;
D O I
10.1137/0522025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the existence and stability of the slow traveling pulse for the FitzHugh-Nagumo system u(t) = u(xx) + u(1-u)(u-a)-w, w(t) = epsilon(u-gamma-w). This traveling wave is obtained as a perturbation of the standing wave of the Nagumo equation u(t) = u(xx) + u(1-u)(u-a). Its existence is established by analyzing how the unstable manifold of the origin exits a suitable block. This geometric proof is an alternative approach to the singular perturbation expansion proposed by Casten, Cohen, and Lagerstrom [Quart. Appl. Math., 32 (1975), pp. 335-367], as well as to the existence proof of Hastings [SIAM J. Appl. Math., 42 (1982), pp. 247-260]. The method also allows use of the techniques developed by Evans [Indiana Univ. Math. J., 24 (1985), pp. 193-226] to analyze the spectrum of the variational equation around the traveling wave. It is shown that there is exactly one unstable mode.
引用
收藏
页码:392 / 399
页数:8
相关论文
共 50 条
  • [41] Invariant algebraic surfaces of the FitzHugh-Nagumo system
    Zhang, Liwei
    Yu, Jiang
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 483 (02)
  • [42] Limit dynamics for the stochastic FitzHugh-Nagumo system
    Lv, Yan
    Wang, Wei
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (04) : 3091 - 3105
  • [43] Stabilization of Solutions to a FitzHugh-Nagumo Type System
    Hilhorst, Danielle
    Rybka, Piotr
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2010, 138 (1-3) : 291 - 304
  • [44] Connections between saddles for the Fitzhugh-Nagumo system
    Rocsoreanu, C
    Giurgiteanu, N
    Georgescu, A
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (02): : 533 - 540
  • [45] Stabilization of Solutions to a FitzHugh-Nagumo Type System
    Danielle Hilhorst
    Piotr Rybka
    [J]. Journal of Statistical Physics, 2010, 138 : 291 - 304
  • [46] Periodic Solutions of a Periodic FitzHugh-Nagumo System
    Llibre, Jaume
    Vidal, Claudio
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (13):
  • [47] Bifurcation and chaos in discrete FitzHugh-Nagumo system
    Jing, ZJ
    Chang, Y
    Guo, BL
    [J]. CHAOS SOLITONS & FRACTALS, 2004, 21 (03) : 701 - 720
  • [48] An analysis of the reliability phenomenon in the FitzHugh-Nagumo model
    Kosmidis, Efstratios K.
    Pakdaman, K.
    [J]. J. Comput. Neurosci., 1600, 1 (5-22):
  • [49] MICROCONTROLLER BASED MODEL OF FITZHUGH-NAGUMO SYSTEM
    Petrovas, Andrius
    Lisauskas, Saulius
    Slepikas, Alvydas
    [J]. ELECTRICAL AND CONTROL TECHNOLOGIES, 2012, : 78 - +
  • [50] Unpeeling a Homoclinic Banana in the FitzHugh-Nagumo System
    Carter, Paul
    Sandstede, Bjorn
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2018, 17 (01): : 236 - 349