ANDERSON LOCALIZATION AND NONLINEAR SIGMA-MODEL

被引:0
|
作者
HIKAMI, S [1 ]
机构
[1] CENS, SERV PHYS THEOR, F-91191 GIF SUR YVETTE, FRANCE
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:120 / 137
页数:18
相关论文
共 50 条
  • [21] POSSIBLE RENORMALIZATION OF NONLINEAR SIGMA-MODEL
    BERGERE, MC
    DROUFFE, JM
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A, 1972, A 11 (01): : 121 - +
  • [22] QUANTIZATION OF THE NONLINEAR SIGMA-MODEL AND THE SKYRME MODEL
    ASANO, H
    KANADA, H
    SO, H
    PHYSICAL REVIEW D, 1991, 44 (01): : 277 - 288
  • [23] NONLINEAR SIGMA-MODEL AND NUCLEON STRUCTURE
    ISLAM, MM
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1992, 53 (02): : 253 - 262
  • [24] INEQUIVALENT QUANTIZATIONS FOR NONLINEAR SIGMA-MODEL
    DATE, G
    GOVINDARAJAN, TR
    SANKARAN, P
    SHANKAR, R
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 132 (02) : 293 - 313
  • [25] GEOMETRICAL APPROACH TO THE NONLINEAR SIGMA-MODEL
    CHEPILKO, NM
    FUJII, K
    KOBUSHKIN, AP
    PHYSICAL REVIEW D, 1991, 43 (07): : 2391 - 2395
  • [26] NONLINEAR SIGMA-MODEL FOR STRING SOLITONS
    NATSUUME, M
    PHYSICAL REVIEW D, 1993, 48 (02): : 835 - 838
  • [27] Localization in a rough billiard: A sigma-model formulation
    Frahm, KM
    PHYSICAL REVIEW B, 1997, 55 (14) : R8626 - R8629
  • [28] Anderson Localization for a Supersymmetric Sigma Model
    Disertori, M.
    Spencer, T.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 300 (03) : 659 - 671
  • [29] Anderson Localization for a Supersymmetric Sigma Model
    M. Disertori
    T. Spencer
    Communications in Mathematical Physics, 2010, 300 : 659 - 671
  • [30] NONLINEAR SIGMA-MODEL COUPLED TO A BROKEN SUPERGRAVITY
    GOTO, T
    YANAGIDA, T
    PROGRESS OF THEORETICAL PHYSICS, 1990, 83 (06): : 1076 - 1081