On Reversible Combinatory Logic

被引:2
|
作者
Di Pierro, Alessandra [1 ]
Hankin, Chris [2 ]
Wiklicky, Herbert [2 ]
机构
[1] Univ Pisa, Dipartimento Informat, Pisa, Italy
[2] Imperial Coll London, Dept Comp, London, England
基金
英国工程与自然科学研究理事会;
关键词
Reversible computation; quantum computation; (reversible) combinatory logic;
D O I
10.1016/j.entcs.2005.09.018
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The lambda-calculus is destructive: its main computational mechanism - beta reduction - destroys the redex and makes it thus impossible to replay the computational steps. Recently, reversible computational models have been studied mainly in the context of quantum computation, as (without measurements) quantum physics is inherently reversible. However, reversibility also changes fundamentally the semantical framework in which classical computation has to be investigated. We describe an implementation of classical combinatory logic into a reversible calculus for which we present an algebraic model based on a generalisation of the notion of group.
引用
收藏
页码:25 / 35
页数:11
相关论文
共 50 条
  • [21] The axiom of choice and combinatory logic
    Cantini, A
    JOURNAL OF SYMBOLIC LOGIC, 2003, 68 (04) : 1091 - 1108
  • [22] On the likelihood of normalization in combinatory logic
    Bendkowski, Maciej
    Grygiel, Katarzyna
    Zaionc, Marek
    JOURNAL OF LOGIC AND COMPUTATION, 2017, 27 (07) : 2251 - 2269
  • [23] Asymptotic Properties of Combinatory Logic
    Bendkowski, Maciej
    Grygiel, Katarzyna
    Zaionc, Marek
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION (TAMC 2015), 2015, 9076 : 62 - 72
  • [24] Semantics for Combinatory Logic With Intersection Types
    Ghilezan, Silvia
    Kasterovic, Simona
    FRONTIERS IN COMPUTER SCIENCE, 2022, 4
  • [25] SOME INCONSISTENCIES IN ILLATIVE COMBINATORY LOGIC
    BUNDER, MW
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1974, 20 (03): : 199 - 201
  • [26] INTERSECTION TYPES FOR COMBINATORY-LOGIC
    DEZANICIANCAGLINI, M
    HINDLEY, JR
    THEORETICAL COMPUTER SCIENCE, 1992, 100 (02) : 303 - 324
  • [27] Compact bracket abstraction in combinatory logic
    Broda, S
    Damas, L
    JOURNAL OF SYMBOLIC LOGIC, 1997, 62 (03) : 729 - 740
  • [28] ELEMENTS OF COMBINATORY LOGIC - FITCH,FB
    KIELKOPK, CF
    REVIEW OF METAPHYSICS, 1975, 28 (03): : 552 - 553
  • [29] Combinatory logic, language, and cognitive representations
    Desclés, JP
    ALTERNATIVE LOGICS: DO SCIENCES NEED THEM?, 2004, : 115 - 148
  • [30] Finite Combinatory Logic with Intersection Types
    Rehof, Jakob
    Urzyczyn, Pawel
    TYPED LAMBDA CALCULI AND APPLICATIONS, (TLCA 2011), 2011, 6690 : 169 - 183