On the likelihood of normalization in combinatory logic

被引:4
|
作者
Bendkowski, Maciej [1 ]
Grygiel, Katarzyna [1 ]
Zaionc, Marek [1 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, Theoret Comp Sci Dept, Ul Prof Lojasiewicza 6, PL-30348 Krakow, Poland
关键词
Combinatory logic; analytic combinatorics; normalization;
D O I
10.1093/logcom/exx005
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a quantitative basis-independent analysis of combinatory logic. Using a general argument regarding plane binary trees with labelled leaves, we generalize the results of David et al. (see [11]) and Bendkowski et al. (see [6]) to all Turingcomplete combinator bases proving, inter alia, that asymptotically almost no combinator is strongly normalizing nor typeable. We exploit the structure of recently discovered normal-order reduction grammars (see [3]) showing that for each positive n, the set of SK-combinators reducing in n normal-order reduction steps has positive asymptotic density in the set of all combinators. Our approach is constructive, allowing us to systematically find new asymptotically significant fractions of the set of normalizing combinators. We show that the density of normalizing combinators cannot be less than 34%, improving the previously best lower bound of approximately 3% (see [6]). Finally, we present some super-computer experimental results, conjecturing that the density of the set of normalizing combinators is close to 85%.
引用
收藏
页码:2251 / 2269
页数:19
相关论文
共 50 条
  • [1] Strong Normalization and Confluence for Reflexive Combinatory Logic
    Shamkanov, Daniyar S.
    LOGIC, LANGUAGE, INFORMATION AND COMPUTATION, WOLLIC 2011, 2011, 6642 : 228 - 238
  • [2] COMBINATORY LOGIC AND ALGORITHMS
    NOLIN, L
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1971, 272 (23): : 1485 - &
  • [3] DISCRIMINATORS IN COMBINATORY LOGIC
    LONGO, G
    VENTURINIZILLI, M
    JOURNAL OF SYMBOLIC LOGIC, 1977, 42 (03) : 458 - 459
  • [4] COMBINATORY LOGIC AND ALGORITHMS
    NOLIN, L
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1971, 272 (22): : 1435 - &
  • [5] On Reversible Combinatory Logic
    Di Pierro, Alessandra
    Hankin, Chris
    Wiklicky, Herbert
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2006, 135 (03) : 25 - 35
  • [6] Combinatory Logic Synthesizer
    Bessai, Jan
    Dudenhefner, Andrej
    Duedder, Boris
    Martens, Moritz
    Rehof, Jakob
    LEVERAGING APPLICATIONS OF FORMAL METHODS, VERIFICATION AND VALIDATION: TECHNOLOGIES FOR MASTERING CHANGE, PT I, 2014, 8802 : 26 - 40
  • [7] Reversible combinatory logic
    Di Pierro, Alessandra
    Hankin, Chris
    Wiklicky, Herbert
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2006, 16 (04) : 621 - 637
  • [8] COMBINATORY LOGIC WITH DISCRIMINATORS
    KEARNS, JT
    JOURNAL OF SYMBOLIC LOGIC, 1969, 34 (04) : 561 - &
  • [9] Functionality in combinatory logic
    Curry, HB
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1934, 20 : 584 - 590
  • [10] SIMPLIFICATION OF COMBINATORY LOGIC
    GOODMAN, ND
    JOURNAL OF SYMBOLIC LOGIC, 1972, 37 (02) : 225 - &