Density-based clustering of short-text corpora

被引:0
|
作者
Ingaramo, Diego A. [1 ]
Errecalde, Marcelo L. [1 ]
Rosso, Paolo [2 ]
机构
[1] UNSL, LIDIC, Avda Ejercito Andes 950, San Luis, Argentina
[2] Univ Politecn Valencia, DSIC, NLE Lab, Valencia 46022, Spain
来源
关键词
short-text clustering; density-based algorithms;
D O I
暂无
中图分类号
H0 [语言学];
学科分类号
030303 ; 0501 ; 050102 ;
摘要
In this work, we analyse the performance of different density-based algorithms on short-text and narrow domain short-text corpora. We attempt to determine to what extent the features of this kind of corpora impact on the density computation of the clusterings obtained and how robust these algorithms to the different complexity levels are.
引用
收藏
页码:81 / 88
页数:8
相关论文
共 50 条
  • [21] Experimental study on short-text clustering using transformer-based semantic similarity measure
    Abdalgader, Khaled
    Matroud, Atheer A.
    Hossin, Khaled
    [J]. PEERJ COMPUTER SCIENCE, 2024, 10
  • [22] Experimental study on short-text clustering using transformer-based semantic similarity measure
    Abdalgader, Khaled
    Matroud, Atheer A.
    Hossin, Khaled
    [J]. PeerJ Computer Science, 2024, 10
  • [23] Density-Based Clustering of Massive Short Messages using Domain Ontology
    Yang, Shenghong
    Wang, Yongheng
    [J]. 2009 ASIA-PACIFIC CONFERENCE ON INFORMATION PROCESSING (APCIP 2009), VOL 2, PROCEEDINGS, 2009, : 505 - +
  • [24] Review of short-text classification
    Alsmadi, Issa
    Gan, Keng Hoon
    [J]. INTERNATIONAL JOURNAL OF WEB INFORMATION SYSTEMS, 2019, 15 (02) : 155 - 182
  • [25] Generalizing Local Density for Density-Based Clustering
    Lin, Jun-Lin
    [J]. SYMMETRY-BASEL, 2021, 13 (02): : 1 - 24
  • [26] Density-Based Clustering for Adaptive Density Variation
    Qian, Li
    Plant, Claudia
    Boehm, Christian
    [J]. 2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 1282 - 1287
  • [27] Novel density-based and hierarchical density-based clustering algorithms for uncertain data
    Zhang, Xianchao
    Liu, Han
    Zhang, Xiaotong
    [J]. NEURAL NETWORKS, 2017, 93 : 240 - 255
  • [28] An improved method for density-based clustering
    Jin, Hong
    Wang, Shuliang
    Zhou, Qian
    Li, Ying
    [J]. INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2014, 6 (04) : 347 - 368
  • [29] Anytime parallel density-based clustering
    Mai, Son T.
    Assent, Ira
    Jacobsen, Jon
    Dieu, Martin Storgaard
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2018, 32 (04) : 1121 - 1176
  • [30] FULLY ADAPTIVE DENSITY-BASED CLUSTERING
    Steinwart, Ingo
    [J]. ANNALS OF STATISTICS, 2015, 43 (05): : 2132 - 2167