Generalizing Local Density for Density-Based Clustering

被引:1
|
作者
Lin, Jun-Lin [1 ,2 ]
机构
[1] Yuan Ze Univ, Dept Informat Management, Taoyuan 32003, Taiwan
[2] Yuan Ze Univ, Innovat Ctr Big Data & Digital Convergence, Taoyuan 32003, Taiwan
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 02期
关键词
density-based clustering; local density; data mining; NEAREST;
D O I
10.3390/sym13020185
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Discovering densely-populated regions in a dataset of data points is an essential task for density-based clustering. To do so, it is often necessary to calculate each data point's local density in the dataset. Various definitions for the local density have been proposed in the literature. These definitions can be divided into two categories: Radius-based and k Nearest Neighbors-based. In this study, we find the commonality between these two types of definitions and propose a canonical form for the local density. With the canonical form, the pros and cons of the existing definitions can be better explored, and new definitions for the local density can be derived and investigated.
引用
收藏
页码:1 / 24
页数:22
相关论文
共 50 条
  • [1] Scalable local density-based distributed clustering
    Liu Yan-bing
    Liu Zhang-xiong
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (08) : 9491 - 9498
  • [2] Density-based clustering
    Campello, Ricardo J. G. B.
    Kroeger, Peer
    Sander, Jorg
    Zimek, Arthur
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 10 (02)
  • [3] Density-based clustering
    Kriegel, Hans-Peter
    Kroeger, Peer
    Sander, Joerg
    Zimek, Arthur
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2011, 1 (03) : 231 - 240
  • [4] An incremental density-based clustering framework using fuzzy local clustering
    Laohakiat, Sirisup
    Sa-ing, Vera
    INFORMATION SCIENCES, 2021, 547 : 404 - 426
  • [5] Density-Based Clustering for Adaptive Density Variation
    Qian, Li
    Plant, Claudia
    Boehm, Christian
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 1282 - 1287
  • [6] Density-Based Clustering of Polygons
    Joshi, Deepti
    Samal, Ashok K.
    Soh, Leen-Kiat
    2009 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING, 2009, : 171 - 178
  • [7] Density-Based Clustering with Constraints
    Lasek, Piotr
    Gryz, Jarek
    COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2019, 16 (02) : 469 - 489
  • [8] Active Density-Based Clustering
    Mai, Son T.
    He, Xiao
    Hubig, Nina
    Plant, Claudia
    Boehm, Christian
    2013 IEEE 13TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2013, : 508 - 517
  • [9] Stability of Density-Based Clustering
    Rinaldo, Alessandro
    Singh, Aarti
    Nugent, Rebecca
    Wasserman, Larry
    JOURNAL OF MACHINE LEARNING RESEARCH, 2012, 13 : 905 - 948
  • [10] Local density-based similarity matrix construction for spectral clustering
    Wu, Jian
    Cui, Zhi-Ming
    Shi, Yu-Jie
    Sheng, Sheng-Li
    Gong, Sheng-Rong
    Tongxin Xuebao/Journal on Communications, 2013, 34 (03): : 14 - 22