MULTISPECTRAL CLASSIFICATION OF LANDSAT-IMAGES USING NEURAL NETWORKS

被引:242
|
作者
BISCHOF, H [1 ]
SCHNEIDER, W [1 ]
PINZ, AJ [1 ]
机构
[1] UNIV WIEN, INST SURVEYING & REMOTE SENSING, A-1190 VIENNA, AUSTRIA
来源
关键词
D O I
10.1109/36.142926
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Recent progress in neural network research has demonstrated the usefulness of neural networks in a variety of areas. In this work we report the application of three-layer back-propagation networks for classification of Landsat TM data on a pixel-by-pixel basis. The results are compared to Gaussian maximum likelihood classification. First, we show that the neural network is able to perform better than the maximum likelihood classifier. Secondly, in an extension of the basic network architecture we show that textural information can be integrated into the neural network classifier without the explicit definition of a texture measure. Finally, we examine the use of neural networks for postclassificational smoothing.
引用
收藏
页码:482 / 490
页数:9
相关论文
共 50 条
  • [1] Contextual dynamic neural networks learning in multispectral images classification
    Solaiman, B
    Mouchot, MC
    Hillion, A
    [J]. IGARSS '96 - 1996 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM: REMOTE SENSING FOR A SUSTAINABLE FUTURE, VOLS I - IV, 1996, : 523 - 525
  • [2] Land-use classification of multispectral aerial images using artificial neural networks
    Ashish, D.
    McClendon, R. W.
    Hoogenboom, G.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2009, 30 (08) : 1989 - 2004
  • [3] Pixel based classification for Landsat 8 OLI multispectral satellite images using deep learning neural network
    Singh, Mohan
    Tyagi, Kapil Dev
    [J]. REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2021, 24
  • [4] Analysis of multispectral microscope images using neural networks
    Walker, CGH
    [J]. SURFACE AND INTERFACE ANALYSIS, 1996, 24 (03) : 173 - 180
  • [5] Crop Classification Based on Lightened Convolutional Neural Networks in Multispectral Images
    Shi, Jiawei
    Zhang, Haopeng
    Jiang, Zhiguo
    Meng, Gang
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXV, 2019, 11155
  • [6] Crop Classification of Satellite Imagery Using Synthetic Multitemporal and Multispectral Images in Convolutional Neural Networks
    Siesto, Guillermo
    Fernandez-Sellers, Marcos
    Lozano-Tello, Adolfo
    [J]. REMOTE SENSING, 2021, 13 (17)
  • [7] Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks
    Reddick, WE
    Glass, JO
    Cook, EN
    Elkin, TD
    Deaton, RJ
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 1997, 16 (06) : 911 - 918
  • [8] PYRAMID CONVOLUTIONAL NEURAL NETWORKS AND BOTTLENECK RESIDUAL MODULES FOR CLASSIFICATION OF MULTISPECTRAL IMAGES
    Huang, Yukun
    Wei, Jingbo
    Tang, Wenchao
    He, Chaoqi
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 1949 - 1952
  • [9] Classification of Compressed Remote Sensing Multispectral Images via Convolutional Neural Networks
    Giannopoulos, Michalis
    Aidini, Anastasia
    Pentari, Anastasia
    Fotiadou, Konstantina
    Tsakalides, Panagiotis
    [J]. JOURNAL OF IMAGING, 2020, 6 (04)
  • [10] Ship-Iceberg Classification in SAR and Multispectral Satellite Images with Neural Networks
    Heiselberg, Henning
    [J]. REMOTE SENSING, 2020, 12 (15)