PYRAMID CONVOLUTIONAL NEURAL NETWORKS AND BOTTLENECK RESIDUAL MODULES FOR CLASSIFICATION OF MULTISPECTRAL IMAGES

被引:3
|
作者
Huang, Yukun [1 ]
Wei, Jingbo [2 ]
Tang, Wenchao [2 ]
He, Chaoqi [2 ]
机构
[1] Jiangxi Univ Finance & Econ, Sch Informat Technol, Nanchang, Jiangxi, Peoples R China
[2] Nanchang Univ, Inst Space Sci & Technol, Nanchang, Jiangxi, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
multispectral classification; deep neural network; convolutional neural network; pyramid residual;
D O I
10.1109/IGARSS39084.2020.9324314
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The newly emerging classifier using deep network architectures and pyramid bottleneck modules exhibits stronger capability than traditional classifiers. However, they are only suitable for color images or hyperspectral images due to the structural, textural and spectral differences against multispectral images. In this paper, a new network is designed for the classification of high-resolution multispectral images. The new network follows the architecture of pyramid residual network, but the input size, filter size, and filter number of each layer are totally different. These designs make the pyramid residual network conforming to the multispectral advantages of spatial resolutions so as to improve classification performance. Experiments on the satellite multispectral data from GF-1 and RapidEye demonstrate the superiority of the new network.
引用
收藏
页码:1949 / 1952
页数:4
相关论文
共 50 条
  • [1] Crop Classification Based on Lightened Convolutional Neural Networks in Multispectral Images
    Shi, Jiawei
    Zhang, Haopeng
    Jiang, Zhiguo
    Meng, Gang
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXV, 2019, 11155
  • [2] Classification of Compressed Remote Sensing Multispectral Images via Convolutional Neural Networks
    Giannopoulos, Michalis
    Aidini, Anastasia
    Pentari, Anastasia
    Fotiadou, Konstantina
    Tsakalides, Panagiotis
    [J]. JOURNAL OF IMAGING, 2020, 6 (04)
  • [3] Crop Classification of Satellite Imagery Using Synthetic Multitemporal and Multispectral Images in Convolutional Neural Networks
    Siesto, Guillermo
    Fernandez-Sellers, Marcos
    Lozano-Tello, Adolfo
    [J]. REMOTE SENSING, 2021, 13 (17)
  • [4] An optimized convolutional neural network with bottleneck and spatial pyramid pooling layers for classification of foods
    Jahani Heravi, Elnaz
    Habibi Aghdam, Hamed
    Puig, Domenec
    [J]. PATTERN RECOGNITION LETTERS, 2018, 105 : 50 - 58
  • [5] Residual Convolutional Neural Networks for Breast Density Classification
    Lizzi, Francesca
    Atzori, Stefano
    Aringhieri, Giacomo
    Bosco, Paolo
    Marini, Carolina
    Retico, Alessandra
    Traino, Antonio C.
    Caramella, Davide
    Fantacci, M. Evelina
    [J]. PROCEEDINGS OF THE 12TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 3 (BIOINFORMATICS), 2019, : 258 - 263
  • [6] A novel fusion framework of deep bottleneck residual convolutional neural network for breast cancer classification from mammogram images
    Jabeen, Kiran
    Khan, Muhammad Attique
    Hameed, Mohamed Abdel
    Alqahtani, Omar
    Alouane, M. Turki-Hadj
    Masood, Anum
    [J]. FRONTIERS IN ONCOLOGY, 2024, 14
  • [7] Convolutional Neural Networks for Semantic Segmentation of Multispectral Remote Sensing Images
    Lopez, Josue
    Santos, Stewart
    Atzberger, Clement
    Torres, Deni
    [J]. 2018 IEEE 10TH LATIN-AMERICAN CONFERENCE ON COMMUNICATIONS (IEEE LATINCOM), 2018,
  • [8] Contextual dynamic neural networks learning in multispectral images classification
    Solaiman, B
    Mouchot, MC
    Hillion, A
    [J]. IGARSS '96 - 1996 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM: REMOTE SENSING FOR A SUSTAINABLE FUTURE, VOLS I - IV, 1996, : 523 - 525
  • [9] MULTISPECTRAL CLASSIFICATION OF LANDSAT-IMAGES USING NEURAL NETWORKS
    BISCHOF, H
    SCHNEIDER, W
    PINZ, AJ
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1992, 30 (03): : 482 - 490
  • [10] MULTILABEL CLASSIFICATION OF UAV IMAGES WITH CONVOLUTIONAL NEURAL NETWORKS
    Zeggada, Abdallah
    Melgani, Farid
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5083 - 5086