Crop Classification Based on Lightened Convolutional Neural Networks in Multispectral Images

被引:0
|
作者
Shi, Jiawei [1 ,2 ,3 ]
Zhang, Haopeng [1 ,2 ,3 ]
Jiang, Zhiguo [1 ,2 ,3 ]
Meng, Gang [4 ]
机构
[1] Beihang Univ, Sch Astronaut, AImage Proc Ctr, Beijing 102206, Peoples R China
[2] Minist Educ, Key Lab Spacecraft Design Optimizat & Dynam Simul, Beijing 102206, Peoples R China
[3] Beijing Key Lab Digital Media, Beijing 102206, Peoples R China
[4] Beijing Inst Remote Sensing Informat, Beijing 100192, Peoples R China
基金
中国国家自然科学基金;
关键词
crop classification; multispectral remote sensing images; convolutional neural networks;
D O I
10.1117/12.2532747
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Crop classification is a representative problem in multispectral remote sensing image (RSI) classification, and has significance in country food security, ecological security, production estimate, crop growth supervision, and so on. It has attracted increasing attention of many researchers around the world especially after the development of convolutional neural networks (CNN). General CNN-based multispectral RSI classification methods may be not suitable for labeled samples with limited numbers and areas. Other pixel-based classification methods are always affected by noise and ignore spatial information. Focusing on these problems, this paper presents an approach based on lightened CNN for crop classification with a small number of tiny size labeled samples in multispectral images. The contribution of this work is to construct a lightened CNN model for crop classification with small samples in multispectral image. It avoids overfitting of deep CNN and reduces the requirement for the size of training samples. We adopt two-layer fully convolutional network (FCN) to extract features. The first layer uses a convolutional kernel of size 1 and outputs 16-band feature map to obtain spectral band information. Spatial information is extracted in the sequential layer using convolutional kernel of size 3, step 1 and padding 1. Thus the feature map after FCN and the labeled area have the same size. Finally, we use a fully connected layer and a softmax classifier for classification. Our experiment was conducted on 8-band multispectral image of size 50362-by-17810 pixels. There are 5 classes in the multispectral image, namely rice, soy, corn, non-crop, and uncertainty. The experimental result which achieves 86.28% accuracy indicates the good performance of our network for crop classification in multispectral RSIs.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Crop Classification of Satellite Imagery Using Synthetic Multitemporal and Multispectral Images in Convolutional Neural Networks
    Siesto, Guillermo
    Fernandez-Sellers, Marcos
    Lozano-Tello, Adolfo
    [J]. REMOTE SENSING, 2021, 13 (17)
  • [2] Optimal deep convolutional neural network based crop classification model on multispectral remote sensing images
    Chamundeeswari, G.
    Srinivasan, S.
    Bharathi, S. Prasanna
    Priya, P.
    Kannammal, G. Rajendra
    Rajendran, Sasikumar
    [J]. MICROPROCESSORS AND MICROSYSTEMS, 2022, 94
  • [3] PYRAMID CONVOLUTIONAL NEURAL NETWORKS AND BOTTLENECK RESIDUAL MODULES FOR CLASSIFICATION OF MULTISPECTRAL IMAGES
    Huang, Yukun
    Wei, Jingbo
    Tang, Wenchao
    He, Chaoqi
    [J]. IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 1949 - 1952
  • [4] Classification of Compressed Remote Sensing Multispectral Images via Convolutional Neural Networks
    Giannopoulos, Michalis
    Aidini, Anastasia
    Pentari, Anastasia
    Fotiadou, Konstantina
    Tsakalides, Panagiotis
    [J]. JOURNAL OF IMAGING, 2020, 6 (04)
  • [5] Representation and Classification of Auroral Images Based on Convolutional Neural Networks
    Yang, Qiuju
    Zhou, Penghui
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 523 - 534
  • [6] Convolutional Neural Networks for Semantic Segmentation of Multispectral Remote Sensing Images
    Lopez, Josue
    Santos, Stewart
    Atzberger, Clement
    Torres, Deni
    [J]. 2018 IEEE 10TH LATIN-AMERICAN CONFERENCE ON COMMUNICATIONS (IEEE LATINCOM), 2018,
  • [7] Contextual dynamic neural networks learning in multispectral images classification
    Solaiman, B
    Mouchot, MC
    Hillion, A
    [J]. IGARSS '96 - 1996 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM: REMOTE SENSING FOR A SUSTAINABLE FUTURE, VOLS I - IV, 1996, : 523 - 525
  • [8] MULTISPECTRAL CLASSIFICATION OF LANDSAT-IMAGES USING NEURAL NETWORKS
    BISCHOF, H
    SCHNEIDER, W
    PINZ, AJ
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1992, 30 (03): : 482 - 490
  • [9] MULTILABEL CLASSIFICATION OF UAV IMAGES WITH CONVOLUTIONAL NEURAL NETWORKS
    Zeggada, Abdallah
    Melgani, Farid
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5083 - 5086
  • [10] ON CLASSIFICATION OF DISTORTED IMAGES WITH DEEP CONVOLUTIONAL NEURAL NETWORKS
    Zhou, Yiren
    Song, Sibo
    Cheung, Ngai-Man
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 1213 - 1217