THE TRIANGLE LAW FOR LYAPUNOV EXPONENTS OF LARGE RANDOM MATRICES

被引:21
|
作者
ISOPI, M
NEWMAN, CM
机构
[1] Courant Institute of Mathematical Sciences, New York, 10012, NY
关键词
D O I
10.1007/BF02099267
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For products, A(t).A(t - 1)...A(1), of i.i.d. N x N random matrices, with i.i.d. entries, a triangle law governs the N --> infinity distribution of Lyapunov exponents, much like Wigner's quarter-circle law governs the singular values of A(1). Our proof requires finite fourth moments and a bounded density; the result was previously derived only in the Gaussian case.
引用
收藏
页码:591 / 598
页数:8
相关论文
共 50 条