THE TRIANGLE LAW FOR LYAPUNOV EXPONENTS OF LARGE RANDOM MATRICES

被引:21
|
作者
ISOPI, M
NEWMAN, CM
机构
[1] Courant Institute of Mathematical Sciences, New York, 10012, NY
关键词
D O I
10.1007/BF02099267
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For products, A(t).A(t - 1)...A(1), of i.i.d. N x N random matrices, with i.i.d. entries, a triangle law governs the N --> infinity distribution of Lyapunov exponents, much like Wigner's quarter-circle law governs the singular values of A(1). Our proof requires finite fourth moments and a bounded density; the result was previously derived only in the Gaussian case.
引用
收藏
页码:591 / 598
页数:8
相关论文
共 50 条
  • [41] Random and mean Lyapunov exponents for GLn(R)
    Armentano, Diego
    Chinta, Gautam
    Sahi, Siddhartha
    Shub, Michael
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2024, 44 (08) : 2063 - 2079
  • [42] Maximal Lyapunov exponents for random matrix products
    Mark Pollicott
    [J]. Inventiones mathematicae, 2010, 181 : 209 - 226
  • [43] Lyapunov Exponents for the Random Product of Two Shears
    Rob Sturman
    Jean-Luc Thiffeault
    [J]. Journal of Nonlinear Science, 2019, 29 : 593 - 620
  • [44] ON LYAPUNOV EXPONENTS OF DIFFERENCE EQUATIONS WITH RANDOM DELAY
    Nguyen Dinh Cong
    Thai Son Doan
    Siegmund, Stefan
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (03): : 861 - 874
  • [45] Lyapunov exponents with multiplicity 1 for deterministic products of matrices
    Bonatti, C
    Viana, M
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2004, 24 : 1295 - 1330
  • [46] Uniformity of Lyapunov exponents for non-invertible matrices
    Feng, De-Jun
    Lo, Chiu-Hong
    Shen, Shuang
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2020, 40 (09) : 2399 - 2433
  • [47] Universal distribution of Lyapunov exponents for products of Ginibre matrices
    Akemann, Gernot
    Burda, Zdzislaw
    Kieburg, Mario
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (39)
  • [48] Coincidence of Lyapunov exponents for random walks in weak random potentials
    Flury, Markus
    [J]. ANNALS OF PROBABILITY, 2008, 36 (04): : 1528 - 1583
  • [49] SCALING LAW FOR THE MAXIMUM LYAPUNOV CHARACTERISTIC EXPONENT OF INFINITE PRODUCT OF RANDOM MATRICES
    PARISI, G
    VULPIANI, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (08): : L425 - L428
  • [50] Law of large numbers for permanents of random constrained matrices
    Ganesan, Ghurumuruhan
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (04): : 900 - 906