Estimating generalized Lyapunov exponents for products of random matrices

被引:28
|
作者
Vanneste, J. [1 ,2 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Univ Edinburgh, Maxwell Inst Math Sci, Edinburgh EH9 3JZ, Midlothian, Scotland
来源
PHYSICAL REVIEW E | 2010年 / 81卷 / 03期
关键词
BATCHELOR-REGIME; PARTICLES; POLYMERS;
D O I
10.1103/PhysRevE.81.036701
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We discuss several techniques for the evaluation of the generalized Lyapunov exponents which characterize the growth of products of random matrices in the large-deviation regime. A Monte Carlo algorithm that performs importance sampling using a simple random resampling step is proposed as a general-purpose numerical method which is both efficient and easy to implement. Alternative techniques complementing this method are presented. These include the computation of the generalized Lyapunov exponents by solving numerically an eigenvalue problem, and some asymptotic results corresponding to high-order moments of the matrix products. Taken together, the techniques discussed in this paper provide a suite of methods which should prove useful for the evaluation of the generalized Lyapunov exponents in a broad range of applications. Their usefulness is demonstrated on particular products of random matrices arising in the study of scalar mixing by complex fluid flows.
引用
收藏
页数:12
相关论文
共 50 条