Bayesian Consistent Estimation in Deformable Models using Stochastic Algorithms: Applications to Medical Images

被引:0
|
作者
Allassonniere, Stephanie [1 ]
Kuhn, Estelle [2 ]
Trouve, Alain [3 ]
机构
[1] CMAP, Ecole Polytechn, Route Saclay, F-91128 Palaiseau, France
[2] INRA, Domaine Vilvert, F-78352 Jouy En Josas, France
[3] CMLA, ENS Cachan, F-94230 Cachan, France
来源
JOURNAL OF THE SFDS | 2010年 / 151卷 / 01期
关键词
generative statistical model; stochastic EM algorithm; MAP estimator; MCMC methods; medical imaging;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper aims at summarising and validating a methodology proposed in [2, 3, 4] for estimating a Bayesian Mixed Effect (BME) atlas, i.e. coupled templates and geometrical metrics for estimated clusters, in a statistically consistent way given a sample of images. We recall the generative statistical model applied to the observations which enables the simultaneous estimation of the clusters, the templates and geometrical variabilities (related to the metric) in the population. Following [2, 3, 4], we work in a Bayesian framework, use a Maximum A Posteriori estimator and approach its value using a stochastic variant of the Expectation Maximisation (EM) algorithm. The method is validated with two data set consisting of medical images of part of the human cortex and dendrite spines from a mouse model of Parkinson's disease. We present the performances of the method on the estimation of the template, the geometrical variability and the clustering.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [31] Bayesian Estimation and Prediction of Stochastic Volatility Models via INLA
    Ehlers, Ricardo
    Zevallos, M.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (03) : 683 - 693
  • [32] Multivariate stochastic volatility models: Bayesian estimation and model comparison
    Yu, Jun
    Meyer, Renate
    ECONOMETRIC REVIEWS, 2006, 25 (2-3) : 361 - 384
  • [33] Fast Bayesian parameter estimation for stochastic logistic growth models
    Heydari, Jonathan
    Lawless, Conor
    Lydall, David A.
    Wilkinson, Darren J.
    BIOSYSTEMS, 2014, 122 : 55 - 72
  • [34] Bayesian estimation of the basic reproduction number in stochastic epidemic models
    Clancy, Damian
    O'Neill, Philip D.
    BAYESIAN ANALYSIS, 2008, 3 (04): : 737 - 757
  • [35] Sequential Bayesian parameter estimation of stochastic dynamic load models
    Maldonado, Daniel Adrian
    Rao, Vishwas
    Anitescu, Mihai
    Patel, Vivak
    ELECTRIC POWER SYSTEMS RESEARCH, 2020, 189
  • [36] Bayesian parameter estimation for stochastic models of biological cell migration
    Dieterich, Peter
    Preuss, Roland
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2013, 1553 : 16 - 22
  • [37] Estimation of inefficiency in stochastic frontier models: a Bayesian kernel approach
    Guohua Feng
    Chuan Wang
    Xibin Zhang
    Journal of Productivity Analysis, 2019, 51 : 1 - 19
  • [38] Bayesian parametric models for survival prediction in medical applications
    Paolucci, Iwan
    Lin, Yuan-Mao
    Albuquerque Marques Silva, Jessica
    Brock, Kristy
    Odisio, Bruno
    BMC MEDICAL RESEARCH METHODOLOGY, 2023, 23 (01)
  • [39] Bayesian parametric models for survival prediction in medical applications
    Iwan Paolucci
    Yuan-Mao Lin
    Jessica Albuquerque Marques Silva
    Kristy K. Brock
    Bruno C. Odisio
    BMC Medical Research Methodology, 23
  • [40] Continuous label Bayesian segmentation, applications to medical brain images
    Aurdal, L
    Bloch, I
    Maitre, H
    Graffigne, C
    Adamsbaum, C
    INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOL II, 1997, : 128 - 131