Bayesian Consistent Estimation in Deformable Models using Stochastic Algorithms: Applications to Medical Images

被引:0
|
作者
Allassonniere, Stephanie [1 ]
Kuhn, Estelle [2 ]
Trouve, Alain [3 ]
机构
[1] CMAP, Ecole Polytechn, Route Saclay, F-91128 Palaiseau, France
[2] INRA, Domaine Vilvert, F-78352 Jouy En Josas, France
[3] CMLA, ENS Cachan, F-94230 Cachan, France
来源
JOURNAL OF THE SFDS | 2010年 / 151卷 / 01期
关键词
generative statistical model; stochastic EM algorithm; MAP estimator; MCMC methods; medical imaging;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper aims at summarising and validating a methodology proposed in [2, 3, 4] for estimating a Bayesian Mixed Effect (BME) atlas, i.e. coupled templates and geometrical metrics for estimated clusters, in a statistically consistent way given a sample of images. We recall the generative statistical model applied to the observations which enables the simultaneous estimation of the clusters, the templates and geometrical variabilities (related to the metric) in the population. Following [2, 3, 4], we work in a Bayesian framework, use a Maximum A Posteriori estimator and approach its value using a stochastic variant of the Expectation Maximisation (EM) algorithm. The method is validated with two data set consisting of medical images of part of the human cortex and dendrite spines from a mouse model of Parkinson's disease. We present the performances of the method on the estimation of the template, the geometrical variability and the clustering.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [21] Bayesian estimation of inefficiency heterogeneity in stochastic frontier models
    Galan, Jorge E.
    Veiga, Helena
    Wiper, Michael P.
    JOURNAL OF PRODUCTIVITY ANALYSIS, 2014, 42 (01) : 85 - 101
  • [22] Bayesian estimation of inefficiency heterogeneity in stochastic frontier models
    Jorge E. Galán
    Helena Veiga
    Michael P. Wiper
    Journal of Productivity Analysis, 2014, 42 : 85 - 101
  • [23] Construction of Bayesian deformable models via a stochastic approximation algorithm: A convergence study
    Allassonniere, Stephanie
    Kuhn, Estelle
    Trouve, Alain
    BERNOULLI, 2010, 16 (03) : 641 - 678
  • [24] CONSISTENT MAXIMUM LIKELIHOOD ESTIMATION USING SUBSETS WITH APPLICATIONS TO MULTIVARIATE MIXED MODELS
    Ekvall, Karl Oskar
    Jones, Galin L.
    ANNALS OF STATISTICS, 2020, 48 (02): : 932 - 952
  • [25] CONSISTENT STATISTICAL ESTIMATION IN SEMIMARTINGALE MODELS OF STOCHASTIC-APPROXIMATION
    MELNIKOV, AV
    RODKINA, AE
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1992, 17 (01): : 85 - 91
  • [26] Bayesian Estimation and Inference Using Stochastic Electronics
    Thakur, Chetan Singh
    Afshar, Saeed
    Wang, Runchun M.
    Hamilton, Tara J.
    Tapson, Jonathan
    van Schaik, Andre
    FRONTIERS IN NEUROSCIENCE, 2016, 10
  • [27] Nonlinear registration of brain images using deformable models
    Davatzikos, C
    PROCEEDINGS OF THE IEEE WORKSHOP ON MATHEMATICAL METHODS IN BIOMEDICAL IMAGE ANALYSIS, 1996, : 94 - 103
  • [28] Simulating Copulas: Stochastic Models, Sampling Algorithms and Applications
    Durante, Fabrizio
    INTERNATIONAL STATISTICAL REVIEW, 2013, 81 (02) : 307 - 307
  • [29] Architectures, Algorithms, and Applications Using Bayesian Networks
    Kingsbury, Todd
    MULTISENSOR, MULTISOURCE INFORMATION FUSION: ARCHITECTURES, ALGORITHMS, AND APPLICATIONS 2011, 2011, 8064
  • [30] Estimation of inefficiency in stochastic frontier models: a Bayesian kernel approach
    Feng, Guohua
    Wang, Chuan
    Zhang, Xibin
    JOURNAL OF PRODUCTIVITY ANALYSIS, 2019, 51 (01) : 1 - 19