Bayesian Consistent Estimation in Deformable Models using Stochastic Algorithms: Applications to Medical Images

被引:0
|
作者
Allassonniere, Stephanie [1 ]
Kuhn, Estelle [2 ]
Trouve, Alain [3 ]
机构
[1] CMAP, Ecole Polytechn, Route Saclay, F-91128 Palaiseau, France
[2] INRA, Domaine Vilvert, F-78352 Jouy En Josas, France
[3] CMLA, ENS Cachan, F-94230 Cachan, France
来源
JOURNAL OF THE SFDS | 2010年 / 151卷 / 01期
关键词
generative statistical model; stochastic EM algorithm; MAP estimator; MCMC methods; medical imaging;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper aims at summarising and validating a methodology proposed in [2, 3, 4] for estimating a Bayesian Mixed Effect (BME) atlas, i.e. coupled templates and geometrical metrics for estimated clusters, in a statistically consistent way given a sample of images. We recall the generative statistical model applied to the observations which enables the simultaneous estimation of the clusters, the templates and geometrical variabilities (related to the metric) in the population. Following [2, 3, 4], we work in a Bayesian framework, use a Maximum A Posteriori estimator and approach its value using a stochastic variant of the Expectation Maximisation (EM) algorithm. The method is validated with two data set consisting of medical images of part of the human cortex and dendrite spines from a mouse model of Parkinson's disease. We present the performances of the method on the estimation of the template, the geometrical variability and the clustering.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [1] Generative model and consistent estimation algorithms for non-rigid deformable models
    Allassonniere, S.
    Kuhn, E.
    Trouve, A.
    Amit, Y.
    2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 5787 - 5790
  • [2] Medical Image Segmentation Algorithms using Deformable Models: A Review
    Jayadevappa, D.
    Kumar, S. Srinivas
    Murty, D. S.
    IETE TECHNICAL REVIEW, 2011, 28 (03) : 248 - 255
  • [3] Segmentation of Mosaic Images Based on Deformable Models Using Genetic Algorithms
    Bartoli, Alberto
    Fenu, Gianfranco
    Medvet, Eric
    Pellegrino, Felice Andrea
    Timeus, Nicola
    SMART OBJECTS AND TECHNOLOGIES FOR SOCIAL GOOD, 2017, 195 : 233 - 242
  • [4] Volumetric medical images segmentation using shape constrained deformable models
    Montagnat, J
    Delingette, H
    CVRMED-MRCAS'97: FIRST JOINT CONFERENCE - COMPUTER VISION, VIRTUAL REALITY AND ROBOTICS IN MEDICINE AND MEDICAL ROBOTICS AND COMPUTER-ASSISTED SURGERY, 1997, 1205 : 13 - 22
  • [5] Volume estimation from sparse planar images using deformable models
    Dept. of Med. Phys. and Bioeng., University College Hospital, London WC1E 6AJ, United Kingdom
    不详
    不详
    Image Vision Comput, 8 (559-565):
  • [6] Volume estimation from sparse planar images using deformable models
    Ruff, CF
    Hughes, SW
    Hawkes, DJ
    IMAGE AND VISION COMPUTING, 1999, 17 (08) : 559 - 565
  • [7] Bayesian Estimation for Stochastic Gene Expression Using Multifidelity Models
    Vo, Huy D.
    Fox, Zachary
    Baetica, Ania
    Munsky, Brian
    JOURNAL OF PHYSICAL CHEMISTRY B, 2019, 123 (10): : 2217 - 2234
  • [8] Bayesian estimation of regularization parameters for deformable surface models
    Cunningham, GS
    Lehovich, A
    Hanson, KM
    MEDICAL IMAGING 1999: IMAGE PROCESSING, PTS 1 AND 2, 1999, 3661 : 562 - 573
  • [9] Estimation of Stochastic Volatility Models Using Optimized Filtering Algorithms
    Infante, Saba
    Luna, Cesar
    Sanchez, Luis
    Hernandez, Aracelis
    AUSTRIAN JOURNAL OF STATISTICS, 2019, 48 (02) : 73 - 96
  • [10] Universally consistent estimation for stochastic regression models
    安鸿志
    Hickernell
    Fred J.
    朱力行
    ChineseScienceBulletin, 1995, (10) : 802 - 807