FINDING SYLOW NORMALIZERS IN POLYNOMIAL-TIME

被引:6
|
作者
KANTOR, WM [1 ]
机构
[1] UNIV OREGON,DEPT MATH,EUGENE,OR 97403
基金
美国国家科学基金会;
关键词
D O I
10.1016/0196-6774(90)90009-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a set Γ of permutations of an n-set, let G be the group of permutations generated by Γ. If p is any prime, it is known that a Sylow p-subgroup P of G can be found in polynomial time. We show that the normalizer of P can also be found in polynomial time. In particular, given two Sylow p-subgroups of G, all elements conjugating one to the other can be found (as a coset of the normalizer of one of the Sylow p-subgroups). Analogous results are obtained in the case of Hall subgroups of solvable groups. © 1990.
引用
收藏
页码:523 / 563
页数:41
相关论文
共 50 条
  • [41] Sylow normalizers and Brauer character degrees
    Beltrán, A
    Navarro, G
    JOURNAL OF ALGEBRA, 2000, 229 (02) : 623 - 631
  • [42] An arithmetic for polynomial-time computation
    Schwichtenberg, Helmut
    THEORETICAL COMPUTER SCIENCE, 2006, 357 (1-3) : 202 - 214
  • [43] SUBLATTICES OF THE POLYNOMIAL-TIME DEGREES
    AMBOSSPIES, K
    INFORMATION AND CONTROL, 1985, 65 (01): : 63 - 84
  • [44] On normalizers of Sylow subgroups in finite groups
    A. Ballester-Bolinches
    L. A. Shemetkov
    Siberian Mathematical Journal, 1999, 40 : 1 - 2
  • [45] Sylow normalizers and character tables, II
    Navarro, G
    ISRAEL JOURNAL OF MATHEMATICS, 2002, 132 (1) : 277 - 283
  • [46] ON NORMALIZERS OF SYLOW P-SUBGROUPS
    GO, VB
    DOKLADY AKADEMII NAUK BELARUSI, 1993, 37 (04): : 22 - 24
  • [47] SOLVABILITY BY RADICALS IS IN POLYNOMIAL-TIME
    LANDAU, S
    MILLER, GL
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1985, 30 (02) : 179 - 208
  • [48] ON THE POWER OF PARITY POLYNOMIAL-TIME
    CAI, JY
    HEMACHANDRA, LA
    LECTURE NOTES IN COMPUTER SCIENCE, 1989, 349 : 229 - 239
  • [49] ON DATALOG VS POLYNOMIAL-TIME
    AFRATI, F
    COSMADAKIS, SS
    YANNAKAKIS, M
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1995, 51 (02) : 177 - 196
  • [50] Collapsing polynomial-time degrees
    Ambos-Spies, K
    Bentzien, L
    Fejer, PA
    Merkle, W
    Stephan, F
    LOGIC COLLOQUIM '98, 2000, 13 : 1 - 24