FINDING SYLOW NORMALIZERS IN POLYNOMIAL-TIME

被引:6
|
作者
KANTOR, WM [1 ]
机构
[1] UNIV OREGON,DEPT MATH,EUGENE,OR 97403
基金
美国国家科学基金会;
关键词
D O I
10.1016/0196-6774(90)90009-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a set Γ of permutations of an n-set, let G be the group of permutations generated by Γ. If p is any prime, it is known that a Sylow p-subgroup P of G can be found in polynomial time. We show that the normalizer of P can also be found in polynomial time. In particular, given two Sylow p-subgroups of G, all elements conjugating one to the other can be found (as a coset of the normalizer of one of the Sylow p-subgroups). Analogous results are obtained in the case of Hall subgroups of solvable groups. © 1990.
引用
收藏
页码:523 / 563
页数:41
相关论文
共 50 条
  • [31] Parallel Polynomial-Time Approximation Scheme (PTAS) for Finding Compact Structural Motifs
    Brocka, Bernard
    Yap, Sharlene
    Clemente, Jhoirene
    2023 10TH INTERNATIONAL CONFERENCE ON BIOMEDICAL AND BIOINFORMATICS ENGINEERING, ICBBE 2023, 2023, : 73 - 79
  • [32] FINDING MINIMUM HEIGHT ELIMINATION TREES FOR INTERVAL-GRAPHS IN POLYNOMIAL-TIME
    ASPVALL, B
    HEGGERNES, P
    BIT NUMERICAL MATHEMATICS, 1994, 34 (04) : 484 - 509
  • [33] A polynomial-time algorithm for finding total colorings of partial k-trees
    Isobe, S
    Zhou, X
    Nishizeki, T
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 1998, 1517 : 100 - 113
  • [34] A POLYNOMIAL-TIME ALGORITHM FOR FINDING THE PRIME FACTORS OF CARTESIAN-PRODUCT GRAPHS
    FEIGENBAUM, J
    HERSHBERGER, J
    SCHAFFER, AA
    DISCRETE APPLIED MATHEMATICS, 1985, 12 (02) : 123 - 138
  • [35] Brauer character degrees and Sylow normalizers
    Lorenzo Bonazzi
    Gabriel Navarro
    Noelia Rizo
    Lucía Sanus
    Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 : 2575 - 2582
  • [36] LINK SCHEDULING IN POLYNOMIAL-TIME
    HAJEK, B
    SASAKI, G
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (05) : 910 - 917
  • [37] Structure of Polynomial-Time Approximation
    van Leeuwen, Erik Jan
    van Leeuwen, Jan
    THEORY OF COMPUTING SYSTEMS, 2012, 50 (04) : 641 - 674
  • [38] On Polynomial-Time Relation Reducibility
    Gao, Su
    Ziegler, Caleb
    NOTRE DAME JOURNAL OF FORMAL LOGIC, 2017, 58 (02) : 271 - 285
  • [39] ON THE POWER OF PARITY POLYNOMIAL-TIME
    CAI, JY
    HEMACHANDRA, LA
    MATHEMATICAL SYSTEMS THEORY, 1990, 23 (02): : 95 - 106
  • [40] ON THE STRUCTURE OF POLYNOMIAL-TIME DEGREES
    AMBOSSPIES, K
    LECTURE NOTES IN COMPUTER SCIENCE, 1984, 166 : 198 - 208