BI-HAMILTONIAN FORMULATIONS OF THE BATEMAN EQUATION

被引:0
|
作者
MULVEY, JA
机构
[1] Department of Mathematical Science, University of Durham, Durham, DH1 3LE, South Road
关键词
D O I
10.1016/0375-9601(95)00709-C
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss a class of evolution equations equivalent to the simplest universal field equation, the so-called Bateman equation, and show that all of them possess (at least) bi-Hamiltonian structure. The first few conserved charges are calculated.
引用
收藏
页码:147 / 152
页数:6
相关论文
共 50 条
  • [41] The bi-Hamiltonian structure of the Lagrange top
    Medan, C
    PHYSICS LETTERS A, 1996, 215 (3-4) : 176 - 180
  • [42] Alternative structures and bi-Hamiltonian systems
    Marmo, G
    Morandi, G
    Simoni, A
    Ventriglia, F
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (40): : 8393 - 8406
  • [43] Boussinesq hierarchy and bi-Hamiltonian geometry
    Ortenzi, Giovanni
    Pedroni, Marco
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (07)
  • [44] On the Bi-Hamiltonian Geometry of WDVV Equations
    Pavlov, Maxim V.
    Vitolo, Raffaele F.
    LETTERS IN MATHEMATICAL PHYSICS, 2015, 105 (08) : 1135 - 1163
  • [45] Bi-Hamiltonian formalism: A constructive approach
    Smirnov, RG
    LETTERS IN MATHEMATICAL PHYSICS, 1997, 41 (04) : 333 - 347
  • [46] On the Bi-Hamiltonian Geometry of WDVV Equations
    Maxim V. Pavlov
    Raffaele F. Vitolo
    Letters in Mathematical Physics, 2015, 105 : 1135 - 1163
  • [47] IS A BI-HAMILTONIAN SYSTEM NECESSARILY INTEGRABLE
    KUPERSHMIDT, BA
    PHYSICS LETTERS A, 1987, 123 (02) : 55 - 59
  • [48] Inverse bi-Hamiltonian separable chains
    M. Błaszak
    Theoretical and Mathematical Physics, 2000, 122 : 140 - 150
  • [49] A bi-Hamiltonian nature of the Gaudin algebras
    Yakimova, Oksana
    ADVANCES IN MATHEMATICS, 2023, 412
  • [50] BI-HAMILTONIAN FIELD GARNIER SYSTEM
    BLASZAK, M
    PHYSICS LETTERS A, 1993, 174 (1-2) : 85 - 88