BI-HAMILTONIAN FORMULATIONS OF THE BATEMAN EQUATION

被引:0
|
作者
MULVEY, JA
机构
[1] Department of Mathematical Science, University of Durham, Durham, DH1 3LE, South Road
关键词
D O I
10.1016/0375-9601(95)00709-C
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss a class of evolution equations equivalent to the simplest universal field equation, the so-called Bateman equation, and show that all of them possess (at least) bi-Hamiltonian structure. The first few conserved charges are calculated.
引用
收藏
页码:147 / 152
页数:6
相关论文
共 50 条
  • [21] Bi-Hamiltonian structure of multi-component Novikov equation
    Li, Hongmin
    Li, Yuqi
    Chen, Yong
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2014, 21 (04) : 509 - 520
  • [22] On bi-Hamiltonian structure of two-component Novikov equation
    Li, Nianhua
    Liu, Q. P.
    PHYSICS LETTERS A, 2013, 377 (3-4) : 257 - 261
  • [23] A four-component hierarchy of combined integrable equations with bi-Hamiltonian formulations
    Ma, Wen-Xiu
    APPLIED MATHEMATICS LETTERS, 2024, 153
  • [24] Four-component combined integrable equations possessing bi-Hamiltonian formulations
    Ma, Wen-Xiu
    MODERN PHYSICS LETTERS B, 2024, 38 (33):
  • [25] Supersymmetric Bi-Hamiltonian Systems
    Sylvain Carpentier
    Uhi Rinn Suh
    Communications in Mathematical Physics, 2021, 382 : 317 - 350
  • [26] A BI-HAMILTONIAN SYSTEM ON THE GRASSMANNIAN
    Bonechi, F.
    Qiu, J.
    Tarlini, M.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2016, 189 (01) : 1401 - 1410
  • [27] A new integrable equation with peakons and cuspons and its bi-Hamiltonian structure
    Geng, Xianguo
    Li, Ruomeng
    Xue, Bo
    APPLIED MATHEMATICS LETTERS, 2015, 46 : 64 - 69
  • [28] Quantum bi-Hamiltonian systems
    Cariñena, JF
    Grabowski, J
    Marmo, G
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2000, 15 (30): : 4797 - 4810
  • [29] The Bi-Hamiltonian Structure and New Solutions of KdV6 Equation
    Yao, Yuqin
    Zeng, Yunbo
    LETTERS IN MATHEMATICAL PHYSICS, 2008, 86 (2-3) : 193 - 208
  • [30] Singularities of Bi-Hamiltonian Systems
    Bolsinov, Alexey
    Izosimov, Anton
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 331 (02) : 507 - 543