THE MAXIMUM NUMBER OF HAMILTONIAN PATHS IN TOURNAMENTS

被引:22
|
作者
ALON, N [1 ]
机构
[1] TEL AVIV UNIV,SCH MATH SCI,RAYMOND & BEVERLY SACKLER FAC EXACT SCI,IL-69978 TEL AVIV,ISRAEL
关键词
AMS subject classification (1980): 05C20; 05C35; 05C38;
D O I
10.1007/BF02128667
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Solving an old conjecture of Szele we show that the maximum number of directed Hamiltonian paths in a tournament on n vertices is at most c . n3/2 . n!/2n-1, where c is a positive constant independent of n.
引用
收藏
页码:319 / 324
页数:6
相关论文
共 50 条
  • [41] Oriented Hamiltonian cycles in tournaments
    Havet, F
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2000, 80 (01) : 1 - 31
  • [42] Hamiltonian cycles in regular tournaments
    Cuckler, Bill
    COMBINATORICS PROBABILITY & COMPUTING, 2007, 16 (02): : 239 - 249
  • [43] ARC-HAMILTONIAN TOURNAMENTS
    ZHU, XF
    KEXUE TONGBAO, 1983, 28 (05): : 714 - 715
  • [44] NUMBER OF HAMILTONIAN PATHS AND CYCLES ON K-COLORED GRAPHS
    KLARNER, DA
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1969, 72 (04): : 384 - &
  • [45] TOURNAMENTS WITH KERNELS BY MONOCHROMATIC PATHS
    Galeana-Sanchez, Hortensia
    O'Reilly-Regueiro, Eugenia
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2012, 7 (02) : 18 - 29
  • [46] Endpoint extendable paths in tournaments
    Faudree, RJ
    Gyarfas, A
    JOURNAL OF GRAPH THEORY, 1996, 23 (03) : 303 - 307
  • [47] On the Maximum Number of Linearly Independent Cycles and Paths in a Network
    Gopalan, Abishek
    Ramasubramanian, Srinivasan
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2014, 22 (05) : 1373 - 1388
  • [48] The maximum number of disjoint paths in faulty enhanced hypercubes
    Liu, Hongmei
    Jin, Dan
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2019, 108 : 99 - 112
  • [49] HEURISTICS FOR FINDING A MAXIMUM NUMBER OF DISJOINT BOUNDED PATHS
    RONEN, D
    PERL, Y
    NETWORKS, 1984, 14 (04) : 531 - 544
  • [50] The maximum number of paths of length four in a planar graph
    Ghosh, Debarun
    Gyori, Ervin
    Martin, Ryan R.
    Paulos, Addisu
    Salia, Nika
    Xiao, Chuanqi
    Zamora, Oscar
    DISCRETE MATHEMATICS, 2021, 344 (05)