THE MAXIMUM NUMBER OF HAMILTONIAN PATHS IN TOURNAMENTS

被引:22
|
作者
ALON, N [1 ]
机构
[1] TEL AVIV UNIV,SCH MATH SCI,RAYMOND & BEVERLY SACKLER FAC EXACT SCI,IL-69978 TEL AVIV,ISRAEL
关键词
AMS subject classification (1980): 05C20; 05C35; 05C38;
D O I
10.1007/BF02128667
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Solving an old conjecture of Szele we show that the maximum number of directed Hamiltonian paths in a tournament on n vertices is at most c . n3/2 . n!/2n-1, where c is a positive constant independent of n.
引用
收藏
页码:319 / 324
页数:6
相关论文
共 50 条
  • [21] HAMILTONIAN PATHS AND CYCLES, NUMBER OF ARCS AND INDEPENDENCE NUMBER IN DIGRAPHS
    MANOUSSAKIS, Y
    AMAR, D
    DISCRETE MATHEMATICS, 1992, 105 (1-3) : 157 - 172
  • [22] ARC-DISJOINT HAMILTONIAN PATHS IN STRONG ROUND DECOMPOSABLE LOCAL TOURNAMENTS
    Meng, Wei
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (01) : 297 - 310
  • [23] DIGRAPHS WITH MAXIMUM NUMBER OF PATHS AND CYCLES
    PERL, Y
    NETWORKS, 1987, 17 (03) : 295 - 305
  • [24] Local tournaments with the minimum number of Hamiltonian cycles or cycles of length three
    Meierling, Dirk
    DISCRETE MATHEMATICS, 2010, 310 (13-14) : 1940 - 1948
  • [25] Arc-disjoint hamiltonian paths in non-round decomposable local tournaments
    Li, Ruijuan
    Han, Tingting
    DISCRETE MATHEMATICS, 2017, 340 (12) : 2916 - 2924
  • [26] Hamiltonian paths, containing a given path or collection of arcs, in close to regular multipartite tournaments
    Volkmann, L
    Yeo, A
    DISCRETE MATHEMATICS, 2004, 281 (1-3) : 267 - 276
  • [27] Parity of paths in tournaments
    El Sahili, Amine
    Aad, Maria Abi
    DISCRETE MATHEMATICS, 2020, 343 (04)
  • [28] Powers of paths in tournaments
    Draganić, Nemanja
    Dross, François
    Fox, Jacob
    Girão, António
    Havet, Frédéric
    Korándi, Dániel
    Lochet, William
    Correia, David Munhá
    Scott, Alex
    Sudakov, Benny
    Combinatorics Probability and Computing, 2021, 30 (06) : 894 - 898
  • [29] Powers of paths in tournaments
    Draganic, Nemanja
    Dross, Francois
    Fox, Jacob
    Girao, Antonio
    Havet, Frederic
    Korandi, Daniel
    Lochet, William
    Correia, David Munha
    Scott, Alex
    Sudakov, Benny
    COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (06): : 894 - 898
  • [30] PATHS AND CYCLES IN TOURNAMENTS
    THOMASON, A
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 296 (01) : 167 - 180