Parameter estimation with multiterminal data compression

被引:0
|
作者
Han, TS
Amari, S
机构
[1] UNIV TOKYO,FAC ENGN,DEPT MATH ENGN & INFORMAT PHYS,TOKYO 113,JAPAN
[2] RIKEN,BRAIN INFORMAT PROC GRP,FRONTIER RES PROGRAM,WAKO,SAITAMA 35101,JAPAN
关键词
multiterminal estimation theory; universal coding; maximum-likelihood estimator; Fisher information; Cramer-Rao bound; data compression;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The multiterminal estimation theory deals with an entirely novel problem which takes place in the void between information theory and statistics, that is, what amount of Fisher information can be attained under a restriction on the amount of Shannon information, The key idea here is the indivisible fusion of the information-theoretic universal coding problem and the statistical maximum-likelihood parameter estimation problem, The main result is the explicit establishment of maximum-likelihood estimators attainable under the rate-constrained universal coding scheme, which is shown to have a variance equal to the inverse of the Fisher information. This may be regarded as giving a multiterminal generalization of the usual Cramer-Rao bound. Relevant properties and examples of these maximum-likelihood estimators are also shown.
引用
收藏
页码:1802 / 1833
页数:32
相关论文
共 50 条
  • [31] Approach to modal parameter identification using data compression
    Carlin, R.A.
    Garcia, E.
    Saggio, F.
    Modal analysis, 1994, 9 (02): : 125 - 138
  • [32] In-network Compression for Multiterminal Cascade MIMO Systems
    Aguerri, Inaki Estella
    Zaidi, Abdellatif
    2017 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2017,
  • [33] On wavelet compression and cardinality estimation of enterprise data
    Choudur, Lakshminarayan
    Dayal, Umeshwar
    Gupta, Chetan
    Swaminathan, Ram
    HP Laboratories Technical Report, 2010, (132): : 1 - 12
  • [34] Parameter Estimation of Markovian Arrivals with Utilization Data
    Li, Chen
    Zheng, Junjun
    Okamura, Hiroyuki
    Dohi, Tadashi
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2022, E105B (01) : 1 - 10
  • [35] Data parser approaches for (online) parameter estimation
    Deiler C.
    CEAS Aeronautical Journal, 2014, 5 (3) : 345 - 357
  • [36] Modal parameter estimation from inconsistent data
    Jacobsen, N-J
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2012) / INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2012), 2012, : 2775 - 2784
  • [37] Parameter estimation for ARX models with missing data
    Horner, M.
    Pakzad, S. N.
    LIFE-CYCLE OF ENGINEERING SYSTEMS: EMPHASIS ON SUSTAINABLE CIVIL INFRASTRUCTURE, 2017, : 2138 - 2144
  • [38] Parameter estimation on multivalent ITC data sets
    Franziska Erlekam
    Maximilian Zumbansen
    Marcus Weber
    Scientific Reports, 12
  • [39] Parameter estimation in the presence of bounded data uncertainties
    Chandrasekaran, S
    Golub, GH
    Gu, M
    Sayed, AH
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 19 (01) : 235 - 252
  • [40] Autoregressive parameter estimation from noisy data
    Zheng, WX
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 2000, 47 (01): : 71 - 75