Parameter estimation with multiterminal data compression

被引:0
|
作者
Han, TS
Amari, S
机构
[1] UNIV TOKYO,FAC ENGN,DEPT MATH ENGN & INFORMAT PHYS,TOKYO 113,JAPAN
[2] RIKEN,BRAIN INFORMAT PROC GRP,FRONTIER RES PROGRAM,WAKO,SAITAMA 35101,JAPAN
关键词
multiterminal estimation theory; universal coding; maximum-likelihood estimator; Fisher information; Cramer-Rao bound; data compression;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The multiterminal estimation theory deals with an entirely novel problem which takes place in the void between information theory and statistics, that is, what amount of Fisher information can be attained under a restriction on the amount of Shannon information, The key idea here is the indivisible fusion of the information-theoretic universal coding problem and the statistical maximum-likelihood parameter estimation problem, The main result is the explicit establishment of maximum-likelihood estimators attainable under the rate-constrained universal coding scheme, which is shown to have a variance equal to the inverse of the Fisher information. This may be regarded as giving a multiterminal generalization of the usual Cramer-Rao bound. Relevant properties and examples of these maximum-likelihood estimators are also shown.
引用
收藏
页码:1802 / 1833
页数:32
相关论文
共 50 条
  • [21] ON UNIVERSALLY EFFICIENT ESTIMATION OF THE 1ST-ORDER AUTOREGRESSIVE PARAMETER AND UNIVERSAL DATA-COMPRESSION
    MERHAV, N
    ZIV, J
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (06) : 1245 - 1254
  • [22] Multiterminal estimation -: Extensions and geometric interpretation
    Jörnsten, R
    Yu, B
    ISIT: 2002 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2002, : 24 - 24
  • [23] REDUNDANCY AND DATA COMPRESSION IN RECURSIVE ESTIMATION
    BARSHALOM, Y
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1972, AC17 (05) : 684 - +
  • [24] Parameter estimation with interacting bad data in state estimation
    Yang, CL
    Fukui, S
    CONTROL OF POWER SYSTEMS AND POWER PLANTS 1997 (CPSPP'97), 1998, : 399 - 404
  • [25] Parameter Estimation on Low Observability Data
    Sembiring, Javensius
    Siegel, Joachim
    Holzapfel, Florian
    PROCEEDINGSS OF THE 2018 IEEE INTERNATIONAL CONFERENCE ON AEROSPACE ELECTRONICS AND REMOTE SENSING TECHNOLOGY (ICARES 2018), 2018,
  • [26] Parameter estimation using aggregate data
    Banks, H. . T.
    Meade, Annabel E.
    Schacht, Celia
    Catenacci, Jared
    Thompson, W. Clayton
    Abate-Daga, Daniel
    Enderling, Heiko
    APPLIED MATHEMATICS LETTERS, 2020, 100
  • [27] Variable Parameter Estimation of SAR Signal Based on Compression Sensing
    Gao, Shuai
    Xu, Huaping
    Qiu, Xue
    Yang, Bo
    2017 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), 2017, : 619 - 623
  • [28] In-Network Compression for Multiterminal Cascade MIMO Systems
    Aguerri, Inaki Estella
    Zaidi, Abdellatif
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2017, 65 (10) : 4176 - 4187
  • [29] Parameter estimation, data compression and stochastic noise elimination in robotics: a wavelet domain-based integrated approach
    Rana, Rohit
    Gaur, Prerna
    Agarwal, Vijyant
    Parthasarathy, Harish
    NONLINEAR DYNAMICS, 2022, 107 (03) : 2633 - 2655
  • [30] Parameter estimation, data compression and stochastic noise elimination in robotics: a wavelet domain-based integrated approach
    Rohit Rana
    Prerna Gaur
    Vijyant Agarwal
    Harish Parthasarathy
    Nonlinear Dynamics, 2022, 107 : 2633 - 2655