NUMBER OF POLYNOMIALS AND POLYNOMIAL FUNCTIONS ON FINITE LATTICES

被引:0
|
作者
DORNINGER, D [1 ]
机构
[1] TH VIENNA,INST MATH 4,ARGENTINIER STR 8,A-1040 VIENNA,AUSTRIA
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:199 / 205
页数:7
相关论文
共 50 条
  • [31] Polynomial functions on finite commutative rings
    Frisch, S
    ADVANCES IN COMMUTATIVE RING THEORY, 1999, 205 : 323 - 336
  • [32] POLYNOMIAL FUNCTIONS OVER FINITE MONOIDS
    TICHY, RF
    SEMIGROUP FORUM, 1981, 22 (01) : 83 - 87
  • [33] On the Number of Factorizations of Polynomials over Finite Fields
    Berman, Rachel N.
    Roth, Ron M.
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 1 - 6
  • [34] Polynomials contained in a finite number of maximal ideals
    Sharma, PK
    COMMUNICATIONS IN ALGEBRA, 2003, 31 (07) : 3159 - 3170
  • [35] On the number of factorizations of polynomials over finite fields
    Berman, Rachel N.
    Roth, Ron M.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 182
  • [36] On the number of primitive polynomials over finite fields
    Chang, Y
    Chou, WS
    Shiue, PJS
    FINITE FIELDS AND THEIR APPLICATIONS, 2005, 11 (01) : 156 - 163
  • [37] On the number of permutation polynomials over a finite field
    Kim, Kwang Yon
    Kim, Ryul
    Kim, Jin Song
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2016, 12 (06) : 1519 - 1528
  • [38] CHARACTERIZING NUMBER THEORETIC FUNCTIONS WHICH ARE POLYNOMIALS
    DELEON, DJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (04): : 645 - &
  • [39] On generating of idempotent aggregation functions on finite lattices
    Botur, Michal
    Halas, Radomir
    Mesiar, Radko
    Pocs, Jozef
    INFORMATION SCIENCES, 2018, 430 : 39 - 45
  • [40] Quasi-polynomial functions over bounded distributive lattices
    Miguel Couceiro
    Jean-Luc Marichal
    Aequationes mathematicae, 2010, 80 : 319 - 334