NUMBER OF POLYNOMIALS AND POLYNOMIAL FUNCTIONS ON FINITE LATTICES

被引:0
|
作者
DORNINGER, D [1 ]
机构
[1] TH VIENNA,INST MATH 4,ARGENTINIER STR 8,A-1040 VIENNA,AUSTRIA
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:199 / 205
页数:7
相关论文
共 50 条
  • [21] LEE POLYNOMIALS OF CODES AND THETA FUNCTIONS OF LATTICES
    MAHER, DP
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1978, 30 (04): : 738 - 747
  • [22] LOCAL POLYNOMIAL FUNCTIONS ON SEMI-LATTICES
    GROSSMAN, PA
    JOURNAL OF ALGEBRA, 1981, 69 (02) : 281 - 286
  • [23] Polynomial Functions Over Bounded Distributive Lattices
    Couceiro, Miguel
    Marichal, Jean-Luc
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2012, 18 (3-4) : 247 - 256
  • [24] Uniqueness of entire functions whose difference polynomials sharing a polynomial of certain degree with finite weight
    Banerjee, Abhijit
    Majumder, Sujoy
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2020, 47 (02): : 215 - 225
  • [25] Monomial functions, normal polynomials and polynomial equations
    Gselmann, Eszter
    Iqbal, Mehak
    AEQUATIONES MATHEMATICAE, 2023, 97 (5-6) : 1059 - 1082
  • [26] Monomial functions, normal polynomials and polynomial equations
    Eszter Gselmann
    Mehak Iqbal
    Aequationes mathematicae, 2023, 97 : 1059 - 1082
  • [27] Finite photonic lattices: a solution using characteristic polynomials
    Soto-Eguibar, F.
    Aguilar-Loreto, O.
    Perez-Leija, A.
    Moya-Cessa, H.
    Christodoulides, D. N.
    REVISTA MEXICANA DE FISICA, 2011, 57 (02) : 158 - 161
  • [28] Associative Polynomial Functions over Bounded Distributive Lattices
    Miguel Couceiro
    Jean-Luc Marichal
    Order, 2011, 28 : 1 - 8
  • [29] Associative Polynomial Functions over Bounded Distributive Lattices
    Couceiro, Miguel
    Marichal, Jean-Luc
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2011, 28 (01): : 1 - 8
  • [30] PRE-FIXED POINTS OF POLYNOMIAL FUNCTIONS OF LATTICES
    ERNE, M
    SCHWEIGERT, D
    ALGEBRA UNIVERSALIS, 1994, 31 (02) : 298 - 300