Principal component analysis for interval data

被引:16
|
作者
Billard, L. [1 ]
Le-Rademacher, J. [2 ]
机构
[1] Univ Georgia, Dept Stat, Athens, GA 30602 USA
[2] Med Coll Wisconsin, Wauwatosa, WI USA
来源
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS | 2012年 / 4卷 / 06期
关键词
PCA; intervals; visualization;
D O I
10.1002/wics.1231
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Principal component analysis for classical data is a method used frequently to reduce the effective dimension underlying a data set from p random variables to s << p linear functions of those p random variables and their observed values. With contemporary large data sets, it is often the case that the data are aggregated in some meaningful scientific way such that the resulting data are symbolic data (such as lists, intervals, histograms, and the like); though symbolic data can and do occur naturally and in smaller data sets. Since symbolic data have internal variations along with the familiar (between observations) variation of classical data, direct application of classical methods to symbolic data will ignore much of the information contained in the data. Our focus is to describe and illustrate principal component methodology for interval data. The significance of symbolic data in general and of this article in particular is illustrated by its applicability for our analysis of three key 21st century challengers: networks, security data, and translational medicine. It is relatively easy to visualize the applicability to security data and translational medicine, though less easy to visualize its applicability to networks. Since an interval is typically denoted by (a, b), in a network interval, we let a be a pair of nodes and b be their edge with characteristics c and d, respectively. If this representation of a network interval is valid, then we can more easily visualize its applicability to networks also. (C) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:535 / 540
页数:6
相关论文
共 50 条
  • [11] Symbolic Covariance Principal Component Analysis and Visualization for Interval-Valued Data
    Le-Rademacher, Jennifer
    Billard, Lynne
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2012, 21 (02) : 413 - 432
  • [12] Theoretical derivation of interval principal component analysis
    Serrao, Rodrigo Girdo
    Oliveira, M. Rosario
    Oliveira, Lina
    INFORMATION SCIENCES, 2023, 621 : 227 - 247
  • [13] Sensor fault detection based on principal component analysis for interval-valued data
    Ait-Izem, Tarek
    Harkat, M. -Faouzi
    Djeghaba, Messaoud
    Kratz, Frederic
    QUALITY ENGINEERING, 2018, 30 (04) : 635 - 647
  • [14] Weighted principal component analysis for interval-valued data based on fuzzy clustering
    Sato-Ilic, M
    2003 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-5, CONFERENCE PROCEEDINGS, 2003, : 4476 - 4482
  • [15] On weighted principal component analysis for interval-valued data and its dynamic feature
    Sato-Ilic, Mika
    Oshima, Junya
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2006, 2 (01): : 69 - 82
  • [16] Principal component analysis with interval imputed missing values
    Paola Zuccolotto
    AStA Advances in Statistical Analysis, 2012, 96 : 1 - 23
  • [18] Principal component analysis of genetic data
    Reich, David
    Price, Alkes L.
    Patterson, Nick
    NATURE GENETICS, 2008, 40 (05) : 491 - 492
  • [19] Principal Component Analysis of Thermographic Data
    Winfree, William P.
    Cramer, K. Elliott
    Zalameda, Joseph N.
    Howell, Patricia A.
    Burke, Eric R.
    THERMOSENSE: THERMAL INFRARED APPLICATIONS XXXVII, 2015, 9485
  • [20] Principal component analysis with autocorrelated data
    Zamprogno, Bartolomeu
    Reisen, Valderio A.
    Bondon, Pascal
    Aranda Cotta, Higor H.
    Reis Jr, Neyval C.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (12) : 2117 - 2135