ON THE MULTIPLE WEYL FRACTIONAL INTEGRAL OF A GENERAL SYSTEM OF POLYNOMIALS

被引:0
|
作者
RAINA, RK [1 ]
机构
[1] UNIV UDAIPUR,SKN AGR COLL,DEPT MATH,JOBNER 303329,RAJASTHAN,INDIA
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:283 / 287
页数:5
相关论文
共 50 条
  • [31] New fractional Lanczos vector polynomials and their application to system of Abel-Volterra integral equations and fractional differential equations
    Conte, D.
    Shahmorad, S.
    Talaei, Y.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 366
  • [32] Box Dimension of Weyl Fractional Integral of Continuous Functions with Bounded Variation
    Lei Mu
    Kui Yao
    Yongshun Liang
    Jun Wang
    Analysis in Theory and Applications, 2016, 32 (02) : 174 - 180
  • [33] FRACTIONAL INTEGRAL-OPERATORS INVOLVING A PRODUCT OF GENERALIZED HYPERGEOMETRIC-FUNCTIONS AND A GENERAL-CLASS OF POLYNOMIALS
    GOYAL, SP
    JAIN, RM
    GAUR, N
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1991, 22 (05): : 403 - 411
  • [34] ESTIMATION OF FRACTAL DIMENSION OF WEYL FRACTIONAL INTEGRAL OF CERTAIN CONTINUOUS FUNCTIONS
    Liang, Yong-Shun
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (02)
  • [35] Modified Saigo fractional integral operators involving multivariable H-function and general class of multivariable polynomials
    D. L. Suthar
    Belete Debalkie
    Mitku Andualem
    Advances in Difference Equations, 2019
  • [36] Modified Saigo fractional integral operators involving multivariable H-function and general class of multivariable polynomials
    Suthar, D. L.
    Debalkie, Belete
    Andualem, Mitku
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [37] INTEGRAL AND HYPERGEOMETRIC REPRESENTATIONS FOR MULTIPLE ORTHOGONAL POLYNOMIALS
    Branquinho, Amílcar
    Díaz, Juan E.F.
    Foulquié-Moreno, Ana
    Mañas, Manuel
    Wolfs, Thomas
    arXiv,
  • [38] Multiple orthogonal polynomials associated with the exponential integral
    Van Assche, Walter
    Wolfs, Thomas
    STUDIES IN APPLIED MATHEMATICS, 2023, 151 (02) : 411 - 449
  • [39] Convergence in law to the multiple fractional integral
    Bardina, X
    Jolis, M
    Tudor, CA
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 105 (02) : 315 - 344
  • [40] On some fractional order integral transforms generated by orthogonal polynomials
    Kalla, Shyam L.
    Virchenko, N.
    Tsarenko, V.
    Applied Mathematics and Computation (New York), 1998, 91 (2-3): : 209 - 219