Convergence in law to the multiple fractional integral

被引:14
|
作者
Bardina, X [1 ]
Jolis, M
Tudor, CA
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Bellaterra 08193, Spain
[2] Univ Paris 06, Probabil Lab, F-75252 Paris 05, France
关键词
D O I
10.1016/S0304-4149(03)00018-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the convergence in law in C-0([0, 1]), as epsilon --> 0, of the family of continuous processes {I-etaepsilon(f)}epsilon > 0 defined by the multiple integrals I-etaepsilon(f)(t) = integral(0)(t) . . . integral(0)(t), f(t(1),...,t(n))deta(epsilon)(t(1))...deta(epsilon)(t(n)); t is an element of [0, 1], where f is a deterministic function and {eta(epsilon)}epsilon > 0 is a family of processes, with absolutely continuous paths, converging in law in C-0([0, 1]) to the fractional Brownian motion with Hurst parameter H > 1/2. When f is given by a multimeasure and for any family {eta(epsilon)} with trajectories absolutely continuous whose derivatives are in L-2([0, 1]), we prove that {I-etaepsilon(f)} converges in law to the multiple fractional integral of f. This last integral is a multiple Stratonovich-type integral defined by Dasgupta and Kallianpur (Probab. Theory Relat. Fields 115 (1999) 505) on the space L-2((μ) over tilde (n)), where (μ) over tilde (n), is a measure on [0, 1](n). Finally, we have shown that, for two natural families {eta(epsilon)} converging in law in C-0([0, 1]) to the fractional Brownian motion, the family {I(eta)epsilon(f)} converges in law to the multiple fractional integral for any f is an element of L-2((μ) over tilde (n)). In order to prove the convergence, we have shown that the integral introduced by Dasgupta and Kallianpur (1999a) can be seen as an integral in the sense of Sole and Utzet (Stochastics Stochastics Rep. 29(2) (1990) 203). (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:315 / 344
页数:30
相关论文
共 50 条
  • [1] Convergence of Certain Functionals of Integral Fractional Processes
    José Manuel Corcuera
    David Nualart
    Jeannette H. C. Woerner
    Journal of Theoretical Probability, 2009, 22 : 856 - 870
  • [2] Sufficient Condition on the Fractional Integral for the Convergence of a Function
    Duarte-Mermoud, Manuel A.
    Aguila-Camacho, Norelys
    Gallegos, Javier A.
    SCIENTIFIC WORLD JOURNAL, 2013,
  • [3] Convergence of Certain Functionals of Integral Fractional Processes
    Manuel Corcuera, Jose
    Nualart, David
    Woerner, Jeannette H. C.
    JOURNAL OF THEORETICAL PROBABILITY, 2009, 22 (04) : 856 - 870
  • [4] LOCAL CONVERGENCE OF THE FEM FOR THE INTEGRAL FRACTIONAL LAPLACIAN
    Faustmann, Markus
    Karkulik, Michael
    Melenk, Jens Markus
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (03) : 1055 - 1082
  • [5] CONVERGENCE RATE TO A NORMAL LAW IN AN INTEGRAL METRIC
    ROZOVSKII, LV
    MATHEMATICAL NOTES, 1980, 27 (1-2) : 152 - 157
  • [6] Integral Convergence Criterion for the Multiple Series
    Zubchenkova, Elena V.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2011, 4 (03): : 344 - 349
  • [7] Weak convergence to the multiple Stratonovich integral
    Bardina, X
    Jolis, M
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2000, 90 (02) : 277 - 300
  • [8] Convergence in Law to Operator Fractional Brownian Motions
    Dai, Hongshuai
    JOURNAL OF THEORETICAL PROBABILITY, 2013, 26 (03) : 676 - 696
  • [9] Convergence in Law to Operator Fractional Brownian Motions
    Hongshuai Dai
    Journal of Theoretical Probability, 2013, 26 : 676 - 696
  • [10] CONVERGENCE RATE OF MULTIPLE FRACTIONAL STRATONOVICH TYPE INTEGRAL FOR HURST PARAMETER LESS THAN 1/2
    汪宝彬
    Acta Mathematica Scientia, 2011, 31 (05) : 1694 - 1708