AN EXPLICIT FINITE-DIFFERENCE METHOD FOR FINITE-TIME OBSERVERS

被引:2
|
作者
JAMES, MR [1 ]
机构
[1] AUSTRALIAN NATL UNIV,COOPERAT RES CTR ROBUST & ADAPT SYST,CANBERRA,ACT 0200,AUSTRALIA
关键词
OBSERVERS; NONLINEAR CONTROL SYSTEMS; NUMERICAL METHODS; VISCOSITY SOLUTIONS;
D O I
10.1002/rnc.4590040607
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we present a numerical method for estimating the current state of a nonlinear control system. We use finite differences to discretize a modified version of the finite-time observer equations in James.9 The discretized equations are simple and easily programmed. The convergence and accuracy of the scheme is proved, and the scheme enjoys a number of important properties: availability of rate of convergence estimates, good robustness characteristics, and the ability to handle certain types of discontinuities in the observations. The major disadvantage is that the number of grid points required increases exponentially with the number of state dimensions.
引用
收藏
页码:791 / 806
页数:16
相关论文
共 50 条
  • [31] Explicit Combined Finite-Difference Scheme of High Accuracy
    Kovyrkina, Olyana
    Ostapenko, Vladimir
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018), 2019, 2116
  • [32] EXPLICIT FINITE-DIFFERENCE SCHEMES FOR WAVE FIELD CONTINUATION
    ROCCA, F
    SGUAZZERO, P
    GEOPHYSICS, 1980, 45 (04) : 515 - 515
  • [33] Implicit-explicit finite-difference lattice boltzmann method for compressible flows
    Wang, Y.
    He, Y. L.
    Zhao, T. S.
    Tang, G. H.
    Tao, W. Q.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (12): : 1961 - 1983
  • [34] A hybrid finite-element/finite-difference method with an implicit-explicit time-stepping scheme for Maxwell's equations
    Zhu, B.
    Chen, J.
    Zhong, W.
    Liu, Q. H.
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2012, 25 (5-6) : 607 - 620
  • [35] POYNTINGS THEOREM FOR THE FINITE-DIFFERENCE - TIME-DOMAIN METHOD
    DEMOERLOOSE, J
    DEZUTTER, D
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1995, 8 (05) : 257 - 260
  • [36] Time-domain finite-difference beam propagation method
    Masoudi, HM
    AlSunaidi, MA
    Arnold, JM
    IEEE PHOTONICS TECHNOLOGY LETTERS, 1999, 11 (10) : 1274 - 1276
  • [37] FINITE-DIFFERENCE TIME-DOMAIN METHOD FOR ANTENNA RADIATION
    TIRKAS, PA
    BALANIS, CA
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1992, 40 (03) : 334 - 340
  • [38] Introduction to the Segmented Finite-Difference Time-Domain Method
    Wu, Yan
    Wassell, Ian
    IEEE TRANSACTIONS ON MAGNETICS, 2009, 45 (03) : 1364 - 1367
  • [39] Uncertainty Analyses in the Finite-Difference Time-Domain Method
    Edwards, Robert S.
    Marvin, Andrew C.
    Porter, Stuart J.
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2010, 52 (01) : 155 - 163
  • [40] Travel time calculation of seismic wave with finite-difference method
    Wang, Huazhong
    Xie, Haibing
    Ma, Zaitian
    Tongji Daxue Xuebao/Journal of Tongji University, 1997, 25 (03): : 318 - 321