Implicit-explicit finite-difference lattice boltzmann method for compressible flows

被引:62
|
作者
Wang, Y. [1 ]
He, Y. L. [1 ]
Zhao, T. S. [2 ]
Tang, G. H. [1 ]
Tao, W. Q. [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, State Key Lab Multiphase Flow, Xian 710049, Shaanxi, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
来源
关键词
lattice Boltzmann method; implicit-explicit; finite-difference; compressible; flows;
D O I
10.1142/S0129183107011868
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose an implicit-explicit finite-difference lattice Boltzmann method for compressible flows in this work. The implicit-explicit Runge Kutta scheme, which solves the relaxation term of the discrete velocity Boltzmann equation implicitly and other terms explicitly, is adopted for the time discretization. Owing to the characteristic of the collision invariants in the lattice Boltzmann method, the implicitness can be completely eliminated, and thus no iteration is needed in practice. In this fashion, problems (no matter stiff or not) can be integrated quickly with large Courant Friedriche-Lewy numbers. As a result, with our implicit-explicit finite-difference scheme the computational convergence rate can be significantly improved compared with previous finite-difference and standard lattice Boltzmann methods. Numerical simulations of the Riemann problem, Taylor vortex flow, Couette flow, and oscillatory compressible flows with shock waves show that our implicit-explicit finite-difference lattice Boltzmann method is accurate and efficient. In addition, it is demonstrated that with the proposed scheme non-uniform meshes can also be implemented with ease.
引用
收藏
页码:1961 / 1983
页数:23
相关论文
共 50 条
  • [1] An implicit-explicit finite-difference lattice Boltzmann subgrid method on nonuniform meshes
    Qiu, Ruofan
    Chen, Rongqian
    You, Yancheng
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2017, 28 (04):
  • [2] Implicit-explicit finite-difference lattice Boltzmann method with viscid compressible model for gas oscillating patterns in a resonator
    Wang, Yong
    He, Yaling
    Huang, Jing
    Li, Qing
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2009, 59 (08) : 853 - 872
  • [3] Implicit-Explicit Finite-Difference Lattice Boltzmann Model with Varying Adiabatic Index
    Kis, Stefan T.
    Ambrus, Victor E.
    [J]. TIM 19 PHYSICS CONFERENCE, 2020, 2218
  • [4] Simulating compressible flows with shock waves using the finite-difference Lattice Boltzmann Method
    He, Ya-Ling
    Wang, Yong
    Li, Qing
    Tao, Wen-Quan
    [J]. PROGRESS IN COMPUTATIONAL FLUID DYNAMICS, 2009, 9 (3-5): : 167 - 175
  • [5] Explicit finite-difference lattice Boltzmann method for curvilinear coordinates
    Guo, ZL
    Zhao, TS
    [J]. PHYSICAL REVIEW E, 2003, 67 (06):
  • [6] A NOVEL LESS DISSIPATION FINITE-DIFFERENCE LATTICE BOLTZMANN SCHEME FOR COMPRESSIBLE FLOWS
    Chen, Q.
    Zhang, X. B.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2012, 23 (11):
  • [7] An implicit Lagrangian lattice Boltzmann method for the compressible flows
    Yan, Guangwu
    Dong, Yinfeng
    Liu, Yanhong
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2006, 51 (12) : 1407 - 1418
  • [8] A coupled implicit-explicit time integration method for compressible unsteady flows
    Muscat, Lauren
    Puigt, Guillaume
    Montagnac, Marc
    Brenner, Pierre
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 398
  • [9] A high-order implicit-explicit flux reconstruction lattice Boltzmann method for viscous incompressible flows
    Ma, Chao
    Wu, Jie
    Yu, Haichuan
    Yang, Liming
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 105 : 13 - 28
  • [10] APPLICATIONS OF FINITE-DIFFERENCE LATTICE BOLTZMANN METHOD TO BREAKUP AND COALESCENCE IN MULTIPHASE FLOWS
    Chiappini, Daniele
    Bella, Gino
    Succi, Sauro
    Ubertini, Stefano
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2009, 20 (11): : 1803 - 1816