Implicit-explicit finite-difference lattice Boltzmann method with viscid compressible model for gas oscillating patterns in a resonator

被引:20
|
作者
Wang, Yong [1 ]
He, Yaling [1 ]
Huang, Jing [1 ]
Li, Qing [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Energy & Power Engn, State Key Lab Multiphase Flow Power Engn, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
lattice Boltzmann method; implicit-explicit; finite difference; compressible flow; gas oscillating; NUMERICAL SIMULATIONS; CLOSED TUBE; FLOWS; EQUATION; WAVES; VELOCITY;
D O I
10.1002/fld.1843
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Difficulties for the conventional computational fluid dynamics and the standard lattice Boltzmann method (LBM) to study the gas oscillating patterns in a resonator have been discussed. In light of the recent progresses in the LBM world, we are now able to deal with the compressibility and non-linear shock wave effects in the resonator. A lattice Boltzmann model for viscid compressible flows is introduced firstly. Then, the Boltzmann equation with the Bhatnagar-Gross-Krook approximation is solved by the finite-difference method with a third-order implicit-explicit (IMEX) Runge-Kutta scheme for time discretization, and a fifth-order weighted essentially non-oscillatory (WENO) scheme for space discretization. Numerical results obtained in this study agree quantitatively with both experimental data available and those using conventional numerical methods. Moreover, with the IMEX finite-difference LBM (FDLBM), the computational convergence rate can be significantly improved compared with the previous FDLBM and standard LBM. This study can also be applied for simulating some more complex phenomena in a thermoacoustics engine. Copyright (c) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:853 / 872
页数:20
相关论文
共 50 条
  • [1] Implicit-explicit finite-difference lattice boltzmann method for compressible flows
    Wang, Y.
    He, Y. L.
    Zhao, T. S.
    Tang, G. H.
    Tao, W. Q.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (12): : 1961 - 1983
  • [2] An implicit-explicit finite-difference lattice Boltzmann subgrid method on nonuniform meshes
    Qiu, Ruofan
    Chen, Rongqian
    You, Yancheng
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2017, 28 (04):
  • [3] Implicit-Explicit Finite-Difference Lattice Boltzmann Model with Varying Adiabatic Index
    Kis, Stefan T.
    Ambrus, Victor E.
    [J]. TIM 19 PHYSICS CONFERENCE, 2020, 2218
  • [4] Explicit finite-difference lattice Boltzmann method for curvilinear coordinates
    Guo, ZL
    Zhao, TS
    [J]. PHYSICAL REVIEW E, 2003, 67 (06):
  • [5] Simulating compressible flows with shock waves using the finite-difference Lattice Boltzmann Method
    He, Ya-Ling
    Wang, Yong
    Li, Qing
    Tao, Wen-Quan
    [J]. PROGRESS IN COMPUTATIONAL FLUID DYNAMICS, 2009, 9 (3-5): : 167 - 175
  • [6] A Finite-Difference Lattice Boltzmann Approach for Gas Microflows
    Ghiroldi, G. P.
    Gibelli, L.
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2015, 17 (04) : 1007 - 1018
  • [7] A nondispersive and nondissipative finite-difference lattice Boltzmann method
    Házi, G
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2002, 13 (01): : 67 - 73
  • [8] An alternating-direction hybrid implicit-explicit finite-difference time-domain method for the Schrodinger equation
    Decleer, Pieter
    Van Londersele, Arne
    Rogier, Hendrik
    Vande Ginste, Dries
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 403
  • [9] Finite Difference Lattice Boltzmann Method for Compressible Thermal Fluids
    So, R. M. C.
    Fu, S. C.
    Leung, R. C. K.
    [J]. AIAA JOURNAL, 2010, 48 (06) : 1059 - 1071
  • [10] A NOVEL LESS DISSIPATION FINITE-DIFFERENCE LATTICE BOLTZMANN SCHEME FOR COMPRESSIBLE FLOWS
    Chen, Q.
    Zhang, X. B.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2012, 23 (11):