The non-negative matrix factorization toolbox for biological data mining

被引:133
|
作者
Li, Yifeng [1 ]
Ngom, Alioune [1 ]
机构
[1] Univ Windsor, Sch Comp Sci, Windsor, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Non-negative matrix factorization; Clustering; Bi-clustering; Feature extraction; Feature selection; Classification; Missing values;
D O I
10.1186/1751-0473-8-10
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Non-negative matrix factorization (NMF) has been introduced as an important method for mining biological data. Though there currently exists packages implemented in R and other programming languages, they either provide only a few optimization algorithms or focus on a specific application field. There does not exist a complete NMF package for the bioinformatics community, and in order to perform various data mining tasks on biological data. Results: We provide a convenient MATLAB toolbox containing both the implementations of various NMF techniques and a variety of NMF-based data mining approaches for analyzing biological data. Data mining approaches implemented within the toolbox include data clustering and bi-clustering, feature extraction and selection, sample classification, missing values imputation, data visualization, and statistical comparison. Conclusions: A series of analysis such as molecular pattern discovery, biological process identification, dimension reduction, disease prediction, visualization, and statistical comparison can be performed using this toolbox.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Uniqueness of non-negative matrix factorization
    Laurberg, Hans
    2007 IEEE/SP 14TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2007, : 44 - 48
  • [22] Non-negative Matrix Factorization on Manifold
    Cai, Deng
    He, Xiaofei
    Wu, Xiaoyun
    Han, Jiawei
    ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, : 63 - +
  • [23] Bayesian Non-negative Matrix Factorization
    Schmidt, Mikkel N.
    Winther, Ole
    Hansen, Lars Kai
    INDEPENDENT COMPONENT ANALYSIS AND SIGNAL SEPARATION, PROCEEDINGS, 2009, 5441 : 540 - +
  • [24] Non-negative Matrix Factorization on GPU
    Platos, Jan
    Gajdos, Petr
    Kroemer, Pavel
    Snasel, Vaclav
    NETWORKED DIGITAL TECHNOLOGIES, PT 1, 2010, 87 : 21 - 30
  • [25] On affine non-negative matrix factorization
    Laurberg, Hans
    Hansen, Lars Kai
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PTS 1-3, 2007, : 653 - +
  • [26] Diverse Non-Negative Matrix Factorization for Multiview Data Representation
    Wang, Jing
    Tian, Feng
    Yu, Hongchuan
    Liu, Chang Hong
    Zhan, Kun
    Wang, Xiao
    IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (09) : 2620 - 2632
  • [27] Imaging data analysis using non-negative matrix factorization
    Aonishi, Toru
    Maruyama, Ryoichi
    Ito, Tsubasa
    Miyakawa, Hiroyoshi
    Murayama, Masanori
    Ota, Keisuke
    NEUROSCIENCE RESEARCH, 2022, 179 : 51 - 56
  • [28] Non-Negative Matrix Factorization for Semisupervised Heterogeneous Data Coclustering
    Chen, Yanhua
    Wang, Lijun
    Dong, Ming
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2010, 22 (10) : 1459 - 1474
  • [29] NON-NEGATIVE MATRIX FACTORIZATION OF CLUSTERED DATA WITH MISSING VALUES
    Chen, Rebecca
    Varshney, Lav R.
    2019 IEEE DATA SCIENCE WORKSHOP (DSW), 2019, : 180 - 184
  • [30] Application of non-negative matrix factorization to LC/MS data
    Rapin, Jeremy
    Souloumiac, Antoine
    Bobin, Jerome
    Larue, Anthony
    Junot, Chistophe
    Ouethrani, Minale
    Starck, Jean-Luc
    SIGNAL PROCESSING, 2016, 123 : 75 - 83