SOLUTION OF THE FOKKER-PLANCK-KOLMOGOROV EQUATION BY THE METHOD OF FINITE-DIFFERENCES

被引:0
|
作者
SAULEV, VK
CHERNIKOV, AA
机构
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:358 / 361
页数:4
相关论文
共 50 条
  • [41] Approximate solutions to nonlinear random vibration problems and the Fokker-Planck-Kolmogorov equation
    Polidori, DC
    Beck, JL
    PROBABILISTIC MECHANICS & STRUCTURAL RELIABILITY: PROCEEDINGS OF THE SEVENTH SPECIALTY CONFERENCE, 1996, : 94 - 97
  • [42] Cauchy problem for the Fokker-Planck-Kolmogorov equation of a multidimensional normal Markovian process
    Ivasyshen S.D.
    Pasichnyk H.S.
    Journal of Mathematical Sciences, 2011, 176 (4) : 505 - 514
  • [43] Integrability and Continuity of Solutions to Fokker-Planck-Kolmogorov Equations
    Bogachev, V. I.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2017, 96 (03) : 583 - 586
  • [44] Fokker-Planck-Kolmogorov equations with a potential term on a domain
    O. A. Manita
    S. V. Shaposhnikov
    Doklady Mathematics, 2015, 91 : 26 - 29
  • [45] ON THE INTEGRABILITY OF THE AVERAGED FOKKER-PLANCK-KOLMOGOROV EQUATIONS.
    Nguyen Dong Anh
    Mechanics of solids, 1985, 20 (03) : 44 - 47
  • [46] Uniqueness problems for degenerate Fokker-Planck-Kolmogorov equations
    Bogachev V.I.
    Röckner M.
    Shaposhnikov S.V.
    Journal of Mathematical Sciences, 2015, 207 (2) : 147 - 165
  • [47] Fokker-Planck-Kolmogorov Equations with a Potential Term on a Domain
    Manita, O. A.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2015, 91 (01) : 26 - 29
  • [49] Stochastic dynamics driven by combined Levy-Gaussian noise: fractional Fokker-Planck-Kolmogorov equation and solution
    Zan, Wanrong
    Xu, Yong
    Kurths, Juergen
    Chechkin, Aleksei, V
    Metzler, Ralf
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (38)
  • [50] Convergence to Stationary Measures in Nonlinear Fokker-Planck-Kolmogorov Equations
    Bogachev, V. I.
    Roeckner, M.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2018, 98 (02) : 452 - 457