Flow selections for (nonlinear) Fokker-Planck-Kolmogorov equations

被引:2
|
作者
Rehmeier, Marco [1 ]
机构
[1] Bielefeld Univ, Universitatsstr 25, D-33615 Bielefeld, NRW, Germany
关键词
Fokker-Planck equation; Cauchy problem; Solution flow; PARABOLIC EQUATIONS; UNIQUENESS;
D O I
10.1016/j.jde.2022.04.036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a method to select flows of solutions to the Cauchy problem for linear and nonlinear Fokker- Planck-Kolmogorov equations (FPK equations) for measures on Euclidean space. In the linear case, our method improves similar results of a previous work of the author. Our consideration of flow selections for nonlinear equations, including the particularly interesting case of Nemytskii-type coefficients, seems to be new. We also characterize the (restricted) well-posedness of FPK equations by the uniqueness of such (restricted) flows. Moreover, we show that under suitable assumptions in the linear case such flows are Markovian, i.e. they fulfill the Chapman-Kolmogorov equations.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:105 / 132
页数:28
相关论文
共 50 条
  • [1] Nonlinear Fokker-Planck-Kolmogorov Equations for Measures
    Shaposhnikov, Stanislav, V
    STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS AND RELATED FIELDS: IN HONOR OF MICHAEL ROCKNER, SPDERF, 2018, 229 : 367 - 379
  • [2] Convergence to Stationary Measures in Nonlinear Fokker-Planck-Kolmogorov Equations
    Bogachev, V. I.
    Roeckner, M.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2018, 98 (02) : 452 - 457
  • [3] Fokker-Planck-Kolmogorov Equations with a Parameter
    Bogachev, V. I.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2023, 108 (02) : 357 - 362
  • [4] Stationary Fokker-Planck-Kolmogorov Equations
    Bogachev, Vladimir, I
    STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS AND RELATED FIELDS: IN HONOR OF MICHAEL ROCKNER, SPDERF, 2018, 229 : 3 - 24
  • [5] Connection between the Fokker-Planck-Kolmogorov and nonlinear Langevin equations
    V. Ya. Fainberg
    Theoretical and Mathematical Physics, 2006, 149 : 1710 - 1725
  • [6] ON THE DISCRETIZATION OF SOME NONLINEAR FOKKER-PLANCK-KOLMOGOROV EQUATIONS AND APPLICATIONS
    Carlini, Elisabetta
    Silva, Francisco J.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (04) : 2148 - 2177
  • [7] Connection between the Fokker-Planck-Kolmogorov and nonlinear Langevin equations
    Fainberg, V. Ya.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2006, 149 (03) : 1710 - 1725
  • [8] On the Superposition Principle for Fokker-Planck-Kolmogorov Equations
    Bogachev, V. I.
    Roeckner, M.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2019, 100 (01) : 363 - 366
  • [9] Markov Uniqueness and Fokker-Planck-Kolmogorov Equations
    Albeverio, Sergio
    Bogachev, Vladimir, I
    Roeckner, Michael
    DIRICHLET FORMS AND RELATED TOPICS: IN HONOR OF MASATOSHI FUKUSHIMA'S BEIJU (IWDFRT 2022), 2022, 394 : 1 - 21