A CANONICAL PARTITION THEOREM FOR CHAINS IN REGULAR TREES

被引:0
|
作者
DEUBER, W
PROMEL, HJ
VOIGT, B
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:115 / 132
页数:18
相关论文
共 50 条
  • [31] PARTITION THEOREM FOR ORDINALS
    SCHMIDT, D
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1979, 27 (03) : 382 - 384
  • [32] DYNAMIC PARTITION TREES
    SCHIPPER, H
    OVERMARS, MH
    BIT, 1991, 31 (03): : 421 - 436
  • [33] CANONICAL SCHOENFLIES THEOREM
    GAULD, DB
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 27 (03) : 603 - +
  • [34] A CANONICAL RAMSEY THEOREM
    EATON, N
    RODL, V
    RANDOM STRUCTURES & ALGORITHMS, 1992, 3 (04) : 427 - 444
  • [35] The Shannon-McMillan theorem for Markov chains in Markovian environments indexed by homogeneous trees
    Huang, Huilin
    Yang, Weiguo
    Shi, Zhiyan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (21) : 5286 - 5297
  • [36] ℓ-Divisibility of ℓ-regular partition functions
    Brian Dandurand
    David Penniston
    The Ramanujan Journal, 2009, 19 : 63 - 70
  • [37] Unimodality of regular partition polynomials
    Zhan, Xin-Chun
    Zhu, Bao-Xuan
    RAMANUJAN JOURNAL, 2024, 65 (02): : 939 - 957
  • [38] INFINITE PARTITION REGULAR MATRICES
    DEUBER, WA
    HINDMAN, N
    LEADER, I
    LEFMANN, H
    COMBINATORICA, 1995, 15 (03) : 333 - 355
  • [39] Independence for partition regular equations
    Leader, Imre
    Russell, Paul A.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2007, 114 (05) : 825 - 839
  • [40] Consistency for partition regular equations
    Leader, I
    Russell, PA
    DISCRETE MATHEMATICS, 2006, 306 (8-9) : 847 - 850