THE CENTRALIZER OF A RANK-ONE FLOW

被引:2
|
作者
ZEITZ, P
机构
[1] Department of Mathematics, University of San Francisco, San Francisco, 94117-1080, CA
关键词
D O I
10.1007/BF02761695
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [5], King proved that the centralizer of a rank-1 transformation equals the ''weak closure'' of its (positive and negative) powers (see below for a definition of the weak topology). We define rank-1 flows, and then show that simple modifications of King's proof yield an analogous statement for rank-1 flows.
引用
收藏
页码:129 / 145
页数:17
相关论文
共 50 条
  • [41] ON THE REDUCTION OF RANK-ONE DRINFELD MODULES
    HAYES, DR
    MATHEMATICS OF COMPUTATION, 1991, 57 (195) : 339 - 349
  • [42] THE RANK-ONE THEOREM ON RCD SPACES
    Antonelli, Gioacchino
    Brena, Camillo
    Pasqualetto, Enrico
    ANALYSIS & PDE, 2024, 17 (08):
  • [43] ON RANK-ONE COMMUTATORS AND TRIANGULAR REPRESENTATIONS
    MA, TW
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1986, 29 (03): : 268 - 273
  • [44] Rank-one perturbations of matrix pencils
    Baragana, Itziar
    Roca, Alicia
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 606 (606) : 170 - 191
  • [45] The Geometry of Rank-One Tensor Completion
    Kahle, Thomas
    Kubjas, Kaie
    Kummer, Mario
    Rosen, Zvi
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2017, 1 (01): : 200 - 221
  • [46] On rank-one perturbations of normal operators
    Foias, C.
    Jung, I. B.
    Ko, E.
    Pearcy, C.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 253 (02) : 628 - 646
  • [47] Rank-One Matrix Pursuit for Matrix Completion
    Wang, Zheng
    Lai, Ming-Jun
    Lu, Zhaosong
    Fan, Wei
    Davulcu, Hasan
    Ye, Jieping
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 91 - 99
  • [48] RANK-ONE MASS MATRIX AND PHENOMENOLOGICAL CONSTRAINTS
    SAMAL, MK
    MODERN PHYSICS LETTERS A, 1992, 7 (09) : 757 - 762
  • [49] Numerical computation of rank-one convex envelopes
    Dolzmann, G
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (05) : 1621 - 1635
  • [50] Rank-one and rank-two departures from symmetry
    Gower, JC
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2000, 33 (02) : 177 - 188