THE CENTRALIZER OF A RANK-ONE FLOW

被引:2
|
作者
ZEITZ, P
机构
[1] Department of Mathematics, University of San Francisco, San Francisco, 94117-1080, CA
关键词
D O I
10.1007/BF02761695
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [5], King proved that the centralizer of a rank-1 transformation equals the ''weak closure'' of its (positive and negative) powers (see below for a definition of the weak topology). We define rank-1 flows, and then show that simple modifications of King's proof yield an analogous statement for rank-1 flows.
引用
收藏
页码:129 / 145
页数:17
相关论文
共 50 条
  • [21] On the perturbation of rank-one symmetric tensors
    O'Hara, Michael J.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2014, 21 (01) : 1 - 12
  • [22] Unfoldings and the rank-one approximation of the tensor
    Zhao, Xinzhu
    Dong, Bo
    Yu, Bo
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 375
  • [23] On maps preserving rank-one nilpotents
    Catalano, Louisa
    Chang-Lee, Megan
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (16): : 3092 - 3098
  • [24] Resonances under rank-one perturbations
    Bourget, Olivier
    Cortes, Victor H.
    Del Rio, Rafael
    Fernandez, Claudio
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (09)
  • [25] The Rank-One Quadratic Assignment Problem
    Wang, Yang
    Yang, Wei
    Punnen, Abraham P.
    Tian, Jingbo
    Yin, Aihua
    Lu, Zhipeng
    INFORMS JOURNAL ON COMPUTING, 2021, 33 (03) : 979 - 996
  • [26] RANK-ONE PERTURBATIONS WITH INFINITESIMAL COUPLING
    KISELEV, A
    SIMON, B
    JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 130 (02) : 345 - 356
  • [27] SETS OF GRADIENTS WITH NO RANK-ONE CONNECTIONS
    BALL, JM
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1990, 69 (03): : 241 - 259
  • [28] Discrimination of POVMs with rank-one effects
    Krawiec, Aleksandra
    Pawela, Lukasz
    Puchala, Zbigniew
    QUANTUM INFORMATION PROCESSING, 2020, 19 (12)
  • [29] Rank-one perturbations of diagonal operators
    Ionascu, EJ
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2001, 39 (04) : 421 - 440
  • [30] Reduction of asymmetry by rank-one matrices
    tenBerge, JMF
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1997, 24 (03) : 357 - 366