THE CENTRALIZER OF A RANK-ONE FLOW

被引:2
|
作者
ZEITZ, P
机构
[1] Department of Mathematics, University of San Francisco, San Francisco, 94117-1080, CA
关键词
D O I
10.1007/BF02761695
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [5], King proved that the centralizer of a rank-1 transformation equals the ''weak closure'' of its (positive and negative) powers (see below for a definition of the weak topology). We define rank-1 flows, and then show that simple modifications of King's proof yield an analogous statement for rank-1 flows.
引用
收藏
页码:129 / 145
页数:17
相关论文
共 50 条
  • [1] On the centralizer of an infinite mixing rank-one transformation
    V. V. Ryzhikov
    J.-P. Thouvenot
    Functional Analysis and Its Applications, 2015, 49 : 230 - 233
  • [2] On the centralizer of an infinite mixing rank-one transformation
    Ryzhikov, V. V.
    Thouvenot, J. -P.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2015, 49 (03) : 230 - 233
  • [3] Probabilistic μ for rank-one and perturbed rank-one matrices
    Manfay, Mate
    Balas, Gary J.
    Bokor, Jozsef
    Gerencser, Loszlo
    2013 EUROPEAN CONTROL CONFERENCE (ECC), 2013, : 2357 - 2361
  • [4] The Failure of Rank-One Connections
    Tadeusz Iwaniec
    Gregory C. Verchota
    Andrew L. Vogel
    Archive for Rational Mechanics and Analysis, 2002, 163 : 125 - 169
  • [5] Special rank-one perturbations
    Linear Algebra Its Appl, (171):
  • [6] Special rank-one perturbations
    Barnett, S
    Hartwig, RE
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 235 : 171 - 190
  • [7] SPLITTING OF RANK-ONE VALUATIONS
    JA, BP
    COMMUNICATIONS IN ALGEBRA, 1991, 19 (03) : 777 - 794
  • [8] ACCELERATING WITH RANK-ONE UPDATES
    EIROLA, T
    NEVANLINNA, O
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 121 : 511 - 520
  • [9] A RANK-ONE COHESIVE SET
    DOWNEY, RG
    YUE, Y
    ANNALS OF PURE AND APPLIED LOGIC, 1994, 68 (02) : 161 - 171
  • [10] Rank-one quantum games
    T. Cooney
    M. Junge
    C. Palazuelos
    D. Pérez-García
    computational complexity, 2015, 24 : 133 - 196