ON PARLETTS MATRIX NORM INEQUALITY FOR THE CHOLESKY DECOMPOSITION

被引:4
|
作者
EDELMAN, A [1 ]
MASCARENHAS, WF [1 ]
机构
[1] UNIV ESTADUAL CAMPINAS,DEPT MATEMAT,BR-13081 CAMPINAS,BRAZIL
关键词
CHOLESKY; NORM INEQUALITY; PERTURBATION;
D O I
10.1002/nla.1680020306
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that a certain matrix norm ratio studied by Parlett has a supremum that is O(root n) when the chosen norm is the Frobenius norm, while it is O(log n) for the 2-norm. This ratio arises in Parlett's analysis of the Cholesky decomposition of an n by n matrix.
引用
收藏
页码:243 / 250
页数:8
相关论文
共 50 条
  • [31] A Wiener-Kolmogorov Filter for Seasonal Adjustment and the Cholesky Decomposition of a Toeplitz Matrix
    Pollock, D. Stephen G.
    Mise, Emi
    COMPUTATIONAL ECONOMICS, 2022, 59 (03) : 913 - 933
  • [32] Fast Sparse Cholesky Decomposition and Inversion using Nested Dissection Matrix Reordering
    Brandhorst, Kai
    Head-Gordon, Martin
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2011, 7 (02) : 351 - 368
  • [33] Cholesky decomposition of the two-electron integral matrix in electronic structure calculations
    Roeggen, I.
    Johansen, Tor
    JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (19):
  • [34] MatRIS: Addressing the Challenges for Portability and Heterogeneity Using Tasking for Matrix Decomposition (Cholesky)
    Monil, Mohammad Alaul Haque
    Miniskar, Narasinga Rao
    Valero-Lara, Pedro
    Teranishi, Keita
    Vetter, Jeffrey S.
    ASYNCHRONOUS MANY-TASK SYSTEMS AND APPLICATIONS, WAMTA 2024, 2024, 14626 : 59 - 70
  • [35] MODIFIED CHOLESKY DECOMPOSITION FOR SOLVING THE MOMENT MATRIX IN THE RADIAL POINT INTERPOLATION METHOD
    Stadler, Domen
    Celic, Damjan
    Lipej, Andrej
    Kosel, Franc
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2014, 11 (06)
  • [36] Regularized estimation of Kronecker structured covariance matrix using modified Cholesky decomposition
    Dai, Deliang
    Hao, Chengcheng
    Jin, Shaobo
    Liang, Yuli
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023,
  • [37] SYMBOLIC CHOLESKY DECOMPOSITION OF THE VARIANCE COVARIANCE-MATRIX OF THE NEGATIVE MULTINOMIAL DISTRIBUTION
    SAGAE, M
    TANABE, K
    STATISTICS & PROBABILITY LETTERS, 1992, 15 (02) : 103 - 108
  • [38] A MATRIX INEQUALITY FOR POSITIVE DOUBLE JOHN DECOMPOSITION
    Ma, Lulu
    Hou, Lei
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (03): : 715 - 720
  • [39] A new nested Cholesky decomposition and estimation for the covariance matrix of bivariate longitudinal data
    Feng, Sanying
    Lian, Heng
    Xue, Liugen
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 102 : 98 - 109
  • [40] Several Matrix Euclidean Norm Inequalities Involving Kantorovich Inequality
    Wang, Litong
    Yang, Hu
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2009,