A new nested Cholesky decomposition and estimation for the covariance matrix of bivariate longitudinal data

被引:13
|
作者
Feng, Sanying [1 ,2 ]
Lian, Heng [3 ]
Xue, Liugen [2 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
[2] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
[3] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
基金
北京市自然科学基金;
关键词
Covariance structure; Multivariate longitudinal data; Cholesky decomposition; Maximum likelihood estimation; Variable selection; Moving average; GENERALIZED ESTIMATING EQUATIONS; MODELS; SELECTION; LIKELIHOOD;
D O I
10.1016/j.csda.2016.04.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we propose a nested modified Cholesky decomposition for modeling the covariance structure in multivariate longitudinal data analysis. The entries of this decomposition have simple structures and can be interpreted as the generalized moving average coefficient matrices and innovation covariance matrices. We model the elements of these matrices by a class of unconstrained linear models, and develop a Fisher scoring algorithm to compute the maximum likelihood estimator of the regression parameters. The consistency and asymptotic normality of the estimators are established. Furthermore, we employ the smoothly clipped absolute deviation (SCAD) penalty to select the relevant variables in the models. The resulting SCAD estimators are shown to be asymptotically normal and have the oracle property. Some simulations are conducted to examine the finite sample performance of the proposed method. A real dataset is analyzed for illustration. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:98 / 109
页数:12
相关论文
共 50 条
  • [1] Estimation of the Cholesky decomposition of the covariance matrix for a conditional independent normal model
    Sun, XQ
    Sun, DC
    [J]. STATISTICS & PROBABILITY LETTERS, 2005, 73 (01) : 1 - 12
  • [2] Regularized estimation of Kronecker structured covariance matrix using modified Cholesky decomposition
    Dai, Deliang
    Hao, Chengcheng
    Jin, Shaobo
    Liang, Yuli
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023,
  • [3] Efficient semiparametric estimation via Cholesky decomposition for longitudinal data
    Chen, Ziqi
    Shi, Ning-Zhong
    Gao, Wei
    Tang, Man-Lai
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (12) : 3344 - 3354
  • [4] Parsimonious covariance matrix estimation for longitudinal data
    Smith, M
    Kohn, R
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (460) : 1141 - 1153
  • [5] Adaptive estimation of covariance matrices via Cholesky decomposition
    Verzelen, Nicolas
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2010, 4 : 1113 - 1150
  • [6] A Semiparametric Approach to Simultaneous Covariance Estimation for Bivariate Sparse Longitudinal Data
    Das, Kiranmoy
    Daniels, Michael J.
    [J]. BIOMETRICS, 2014, 70 (01) : 33 - 43
  • [7] AN ENSEMBLE KALMAN FILTER IMPLEMENTATION BASED ON MODIFIED CHOLESKY DECOMPOSITION FOR INVERSE COVARIANCE MATRIX ESTIMATION
    Nino-Ruiz, Elias D.
    Sandu, Adrian
    Deng, Xinwei
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (02): : A867 - A886
  • [8] LOCAL LINEAR ESTIMATION OF COVARIANCE MATRICES VIA CHOLESKY DECOMPOSITION
    Chen, Ziqi
    Leng, Chenlei
    [J]. STATISTICA SINICA, 2015, 25 (03) : 1249 - 1263
  • [9] Estimation of covariance matrix via the sparse Cholesky factor with lasso
    Chang, Changgee
    Tsay, Ruey S.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (12) : 3858 - 3873
  • [10] Modeling the Cholesky factors of covariance matrices of multivariate longitudinal data
    Kohli, Priya
    Garcia, Tanya P.
    Pourahmadi, Mohsen
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 145 : 87 - 100