Estimation of covariance matrix via the sparse Cholesky factor with lasso

被引:27
|
作者
Chang, Changgee [2 ]
Tsay, Ruey S. [1 ]
机构
[1] Univ Chicago, Booth Sch Business, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
关键词
Adding and removing variables; Covariance matrix estimation; Equi-angular covariance estimate; Dynamic weighted lasso; L-1; penalty; Lasso; Updating; Modified Cholesky decomposition; LONGITUDINAL DATA; NONPARAMETRIC-ESTIMATION; VARIABLE SELECTION; ORACLE PROPERTIES; MODELS; LIKELIHOOD; REGRESSION;
D O I
10.1016/j.jspi.2010.04.048
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we discuss a parsimonious approach to estimation of high-dimensional covariance matrices via the modified Cholesky decomposition with lasso. Two different methods are proposed. They are the equi-angular and equi-sparse methods. We use simulation to compare the performance of the proposed methods with others available in the literature, including the sample covariance matrix, the banding method, and the Li-penalized normal loglikelihood method. We then apply the proposed methods to a portfolio selection problem using 80 series of daily stock returns. To facilitate the use of lasso in high-dimensional time series analysis, we develop the dynamic weighted lasso (DWL) algorithm that extends the LARS-lasso algorithm. In particular, the proposed algorithm can efficiently update the lasso solution as new data become available. It can also add or remove explanatory variables. The entire solution path of the L-1-penalized normal loglikelihood method is also constructed. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:3858 / 3873
页数:16
相关论文
共 50 条
  • [1] On variable ordination of Cholesky-based estimation for a sparse covariance matrix
    Kang, Xiaoning
    Deng, Xinwei
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (02): : 283 - 310
  • [2] SPARSE ESTIMATION OF LARGE COVARIANCE MATRICES VIA A NESTED LASSO PENALTY
    Levina, Elizaveta
    Rothman, Adam
    Zhu, Ji
    [J]. ANNALS OF APPLIED STATISTICS, 2008, 2 (01): : 245 - 263
  • [3] Sparse inverse covariance estimation with the graphical lasso
    Friedman, Jerome
    Hastie, Trevor
    Tibshirani, Robert
    [J]. BIOSTATISTICS, 2008, 9 (03) : 432 - 441
  • [4] Sparse estimation of a covariance matrix
    Bien, Jacob
    Tibshirani, Robert J.
    [J]. BIOMETRIKA, 2011, 98 (04) : 807 - 820
  • [5] A Stein's approach to covariance matrix estimation using regularization of Cholesky factor and log-Cholesky metric
    Besson, Olivier
    Vincent, Francois
    Gendre, Xavier
    [J]. STATISTICS & PROBABILITY LETTERS, 2020, 167
  • [6] Adaptive estimation of covariance matrices via Cholesky decomposition
    Verzelen, Nicolas
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2010, 4 : 1113 - 1150
  • [7] Estimation of a sparse and spiked covariance matrix
    Lian, Heng
    Fan, Zengyan
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2015, 27 (02) : 241 - 252
  • [8] A Cholesky-based sparse covariance estimation with an application to genes data
    Li, Chunshi
    Yang, Mo
    Wang, Mingqiu
    Kang, Hong
    Kang, Xiaoning
    [J]. JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2021, 31 (05) : 603 - 616
  • [9] Estimation of sparse covariance matrix via non-convex regularization
    Wang, Xin
    Kong, Lingchen
    Wang, Liqun
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2024, 202
  • [10] ARMA Cholesky factor models for the covariance matrix of linear models
    Lee, Keunbaik
    Baek, Changryong
    Daniels, Michael J.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 115 : 267 - 280