The BACON Approach for Rank-Deficient Data

被引:1
|
作者
Kondylis, Athanassios [1 ]
Hadi, Ali S. [2 ,3 ]
Werner, Mark [4 ]
机构
[1] Philip Morris Int ACR, Neuchatel, Switzerland
[2] Amer Univ Cairo, Dept Math & Actuarial Sci, Cairo, Egypt
[3] Cornell Univ, Dept Stat Sci, Ithaca, NY 14853 USA
[4] Univ Georgia, Dept Stat, Athens, GA 30602 USA
关键词
High-dimensional data; Mahalanobis distance; Outlier detection; Spatial median;
D O I
10.18187/pjsor.v8i3.514
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Rank-deficient data are not uncommon in practice. They result from highly collinear variables and/or highdimensional data. A special case of the latter occurs when the number of recorded variables exceeds the number of observations. The use of the BACON algorithm for outlier detection in multivariate data is extended here to include rank-deficient data. We present two approaches to identifying outliers in rankdeficient data based on the original BACON algorithm. The first algorithm projects the data onto a robust subspace of reduced dimension, while the second employs a ridge type regularization on the covariance matrix. Both algorithms are tested on real as well as simulated data sets with good results in terms of their effectiveness in outlier detection. They are also examined in terms of computational efficiency and found to be very fast, with particularly good scaling properties for increasing dimension.
引用
收藏
页码:359 / 379
页数:21
相关论文
共 50 条
  • [21] Rank-Deficient Dispersive Covariance MIMO Precoders
    Hayes, R., Jr.
    Caffery, J., Jr.
    2006 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC 2006), VOLS 1-4, 2006, : 1904 - 1909
  • [22] Sparse Principal Component of a Rank-deficient Matrix
    Asteris, Megasthenis
    Papailiopoulos, Dimitris S.
    Karystinos, George N.
    2011 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2011, : 673 - 677
  • [23] RANDOMIZED METHODS FOR RANK-DEFICIENT LINEAR SYSTEMS
    Sifuentes, Josef
    Gimbutas, Zydrunas
    Greengard, Leslie
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2015, 44 : 177 - 188
  • [24] Spectral estimator with rank-deficient covariance matrix
    Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
    不详
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2008, 48 (01): : 55 - 58
  • [25] Rank-deficient robust capon filter bank approach to complex spectral estimation
    Wang, YW
    Li, H
    Stoica, P
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (08) : 2713 - 2726
  • [26] Rank-Deficient APES Filter for Complex Spectral Estimation
    Su, Zhigang
    Zhang, Kexiang
    Peng, Yingning
    Wu, Renbiao
    2008 IEEE RADAR CONFERENCE, VOLS. 1-4, 2008, : 329 - +
  • [27] OPTIMAL WEIGHTED MATCHINGS FOR RANK-DEFICIENT SPARSE MATRICES
    Hogg, J. D.
    Scott, J. A.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (04) : 1431 - 1447
  • [28] DOA Estimation with a Rank-deficient Covariance matrix: A Regularized Least-squares approach
    Ali, Hussain
    Ballal, Tarig
    Al-Naffouri, Tareq Y.
    Sharawi, Mohammad S.
    2020 IEEE USNC-CNC-URSI NORTH AMERICAN RADIO SCIENCE MEETING (JOINT WITH AP-S SYMPOSIUM), 2020, : 87 - 88
  • [29] Estimates on the condition number of random rank-deficient matrices
    Beltran, Carlos
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (01) : 25 - 39
  • [30] A new algorithm for rank-deficient problems with inequality constraints
    Shaojie, Zhao
    Yingchun, Song
    Wenna, Li
    SURVEY REVIEW, 2022, 54 (384) : 223 - 232