CONNECTIONS BETWEEN THE REAL POSITIVE SEMIDEFINITE AND DISTANCE MATRIX COMPLETION PROBLEMS

被引:0
|
作者
JOHNSON, CR [1 ]
TARAZAGA, P [1 ]
机构
[1] UNIV PUERTO RICO,DEPT MATH,MAYAGUEZ,PR 00681
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Though the real symmetric positive semidefinite (PSD) matrices and the Euclidean distance matrices are closely related, exact relationships between the corresponding completion problems are not apparent. We establish strong partial relationships of two types. This permits the transfer of some insights from one problem to the other and allows computational tools for the PSD problem to be used for the distance problem.
引用
收藏
页码:375 / 391
页数:17
相关论文
共 50 条
  • [31] Preprocessing sparse semidefinite programs via matrix completion
    Fujisawa, K
    Fukuda, M
    Nakata, K
    OPTIMIZATION METHODS & SOFTWARE, 2006, 21 (01): : 17 - 39
  • [32] Half thresholding eigenvalue algorithm for semidefinite matrix completion
    YongQiang Chen
    ZiYan Luo
    NaiHua Xiu
    Science China Mathematics, 2015, 58 : 2015 - 2032
  • [33] Half thresholding eigenvalue algorithm for semidefinite matrix completion
    Chen YongQiang
    Luo ZiYan
    Xiu NaiHua
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (09) : 2015 - 2032
  • [34] Positive semidefinite univariate matrix polynomials
    Hanselka, Christoph
    Sinn, Rainer
    MATHEMATISCHE ZEITSCHRIFT, 2019, 292 (1-2) : 83 - 101
  • [35] Inequalities on Positive Semidefinite Hermitian Matrix
    LiGuangxing(Dept.Math.
    数学研究与评论, 1989, (03) : 372 - 374
  • [36] Matrix Completion Problems
    Cravo, Gloria
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (8-9) : 2511 - 2540
  • [37] THE COMPLEXITY OF POSITIVE SEMIDEFINITE MATRIX FACTORIZATION
    Shitov, Yaroslav
    SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (03) : 1898 - 1909
  • [38] Positive semidefinite univariate matrix polynomials
    Christoph Hanselka
    Rainer Sinn
    Mathematische Zeitschrift, 2019, 292 : 83 - 101
  • [39] Approximation of positive semidefinite spectral problems
    S. I. Solov’ev
    Differential Equations, 2011, 47 : 1188 - 1196
  • [40] Matrices with positive semidefinite real part
    Choudhury, Projesh Nath
    Sivakumar, K. C.
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (03): : 448 - 470