Preprocessing sparse semidefinite programs via matrix completion

被引:13
|
作者
Fujisawa, K [1 ]
Fukuda, M
Nakata, K
机构
[1] Tokyo Denki Univ, Dept Math Sci, Hatoyama, Saitama 3500394, Japan
[2] NYU, Courant Inst Math Sci, Dept Math, New York, NY 10012 USA
[3] Tokyo Inst Technol, Dept Ind Engn & Management, Meguro Ku, Tokyo 1528552, Japan
来源
OPTIMIZATION METHODS & SOFTWARE | 2006年 / 21卷 / 01期
基金
美国国家科学基金会;
关键词
semidefinite programing; preprocessing; sparsity; matrix completion; clique tree; numerical experiments;
D O I
10.1080/10556780512331319523
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Considering that preprocessing is an important phase in linear programing, it should be more systematically incorporated in semidefinite programing ( SDP) solvers. The conversion method proposed by the authors [Fukuda, M., Kojima, M., Murota, K. and Nakata, K., 2000, SIAM Journal on Optimization, 11, 647 - 674 and Nakata, K., Fujisawa, K., Fukuda, M., Kojima, M. and Murota, K., 2003, Mathematical Programming ( Series B), 95, 303 - 327] is a preprocessing method for sparse SDPs based on matrix completion. This article proposed a new version of the conversion method, which employs a flop estimation function inside its heuristic procedure. Extensive numerical experiments are included showing the advantage of preprocessing by the conversion method for certain classes of very sparse SDPs.
引用
收藏
页码:17 / 39
页数:23
相关论文
共 50 条
  • [1] Fast implementation for semidefinite programs with positive matrix completion
    Yamashita, Makoto
    Nakata, Kazuhide
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2015, 30 (05): : 1030 - 1049
  • [2] Preprocessing and Regularization for Degenerate Semidefinite Programs
    Cheung, Yuen-Lam
    Schurr, Simon
    Wolkowicz, Henry
    [J]. COMPUTATIONAL AND ANALYTICAL MATHEMATICS: IN HONOR OF JONATHAN BORWEIN'S 60TH BIRTHDAY, 2013, 50 : 251 - 303
  • [3] Solving Euclidean distance matrix completion problems via semidefinite programming
    Alfakih, AY
    Khandani, A
    Wolkowicz, H
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 1999, 12 (1-3) : 13 - 30
  • [4] Solving Euclidean Distance Matrix Completion Problems Via Semidefinite Programming
    Abdo Y. Alfakih
    Amir Khandani
    Henry Wolkowicz
    [J]. Computational Optimization and Applications, 1999, 12 : 13 - 30
  • [5] Exploiting sparsity in linear and nonlinear matrix inequalities via positive semidefinite matrix completion
    Sunyoung Kim
    Masakazu Kojima
    Martin Mevissen
    Makoto Yamashita
    [J]. Mathematical Programming, 2011, 129 : 33 - 68
  • [6] Exploiting sparsity in linear and nonlinear matrix inequalities via positive semidefinite matrix completion
    Kim, Sunyoung
    Kojima, Masakazu
    Mevissen, Martin
    Yamashita, Makoto
    [J]. MATHEMATICAL PROGRAMMING, 2011, 129 (01) : 33 - 68
  • [7] Sparse MIMO Radar via Structured Matrix Completion
    Chi, Yuejie
    [J]. 2013 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2013, : 321 - 324
  • [8] Sparse approximate solutions to semidefinite programs
    Hazan, Elad
    [J]. LATIN 2008: THEORETICAL INFORMATICS, 2008, 4957 : 306 - 316
  • [9] Kernel matrix completion by semidefinite programming
    Graepel, T
    [J]. ARTIFICIAL NEURAL NETWORKS - ICANN 2002, 2002, 2415 : 694 - 699
  • [10] Exploiting sparsity in semidefinite programming via matrix completion I: General framework
    Fukuda, M
    Kojima, M
    Murota, K
    Nakata, K
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2001, 11 (03) : 647 - 674