PARAMETRICALLY EXCITED LINEAR NONCONSERVATIVE GYROSCOPIC SYSTEMS

被引:3
|
作者
VIDERMAN, Z [1 ]
RIMROTT, FPJ [1 ]
CLEGHORN, WL [1 ]
机构
[1] UNIV TORONTO,DEPT MECH ENGN,TORONTO M5S 1A1,ONTARIO,CANADA
来源
MECHANICS OF STRUCTURES AND MACHINES | 1994年 / 22卷 / 01期
关键词
Damping - Degrees of freedom (mechanics) - Numerical methods - Resonance - Spacecraft - Stability;
D O I
10.1080/08905459408905202
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper presents an analytical method, based on the multiple scales method, for analyzing parametrically excited linear nonconservative gyroscopic systems having many degrees of freedom and distinct frequencies, where excitation and damping are small. Explicit first-order expressions for stability boundaries are obtained. Various resonances are treated. Some of these results are applied in stability analysis of asymmetric dual-spin spacecraft.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [31] Gyroscopic stabilization in the presence of nonconservative forces
    O. N. Kirillov
    Doklady Mathematics, 2007, 76 : 780 - 785
  • [32] STABILITY OF PARAMETRICALLY EXCITED DISSIPATIVE SYSTEMS
    LEIBER, T
    RISKEN, H
    PHYSICS LETTERS A, 1988, 129 (04) : 214 - 218
  • [33] Active control of parametrically excited systems
    Tehrani, M. Ghandchi
    Kalkowski, M. K.
    Elliott, S. J.
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2014) AND INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2014), 2014, : 1237 - 1251
  • [34] Gyroscopic stabilization in the presence of nonconservative forces
    Kirillov, O. N.
    DOKLADY MATHEMATICS, 2007, 76 (02) : 780 - 785
  • [35] SOLUTION OF LINEAR GYROSCOPIC SYSTEMS
    JANSSENS, F
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1982, 5 (01) : 92 - 94
  • [36] On the theory of linear gyroscopic systems
    Zevin, AA
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1996, 60 (02): : 227 - 232
  • [37] Optimal control of parametrically excited linear delay differential systems via Chebyshev polynomials
    Deshmukh, V
    Ma, HT
    Butcher, E
    PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 1524 - 1529
  • [38] Optimal control of parametrically excited linear delay differential systems via Chebyshev polynomials
    Deshmukh, Venkatesh
    Ma, Haitao
    Butchert, Eric A.
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2006, 27 (03): : 123 - 136
  • [39] RANDOM VIBRATION AND STABILITY OF A LINEAR PARAMETRICALLY EXCITED OSCILLATOR
    ARIARATNAM, ST
    TAM, DSF
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1979, 59 (02): : 79 - 84
  • [40] Linear and nonlinear tuning of parametrically excited MEMS oscillators
    DeMartini, Barry E.
    Rhoads, Jeffrey F.
    Turner, Kimberly L.
    Shaw, Steven W.
    Moehlis, Jeff
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2007, 16 (02) : 310 - 318