PARAMETRICALLY EXCITED LINEAR NONCONSERVATIVE GYROSCOPIC SYSTEMS

被引:3
|
作者
VIDERMAN, Z [1 ]
RIMROTT, FPJ [1 ]
CLEGHORN, WL [1 ]
机构
[1] UNIV TORONTO,DEPT MECH ENGN,TORONTO M5S 1A1,ONTARIO,CANADA
来源
MECHANICS OF STRUCTURES AND MACHINES | 1994年 / 22卷 / 01期
关键词
Damping - Degrees of freedom (mechanics) - Numerical methods - Resonance - Spacecraft - Stability;
D O I
10.1080/08905459408905202
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper presents an analytical method, based on the multiple scales method, for analyzing parametrically excited linear nonconservative gyroscopic systems having many degrees of freedom and distinct frequencies, where excitation and damping are small. Explicit first-order expressions for stability boundaries are obtained. Various resonances are treated. Some of these results are applied in stability analysis of asymmetric dual-spin spacecraft.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [21] Effect of small dissipative and gyroscopic forces on the stability of nonconservative systems
    A. P. Seiranyan
    O. N. Kirillov
    Doklady Physics, 2003, 48 : 679 - 684
  • [22] A THEORY OF LINEAR NONCONSERVATIVE SYSTEMS
    ZEVIN, AA
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1988, 52 (03): : 300 - 304
  • [23] Non-linear stochastic optimal control of acceleration parametrically excited systems
    Wang, Yong
    Jin, Xiaoling
    Huang, Zhilong
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2016, 47 (03) : 561 - 571
  • [24] On periodic solutions of parametrically excited complex non-linear dynamical systems
    Mahmoud, GM
    Aly, SAH
    PHYSICA A, 2000, 278 (3-4): : 390 - 404
  • [25] Studies of parametrically excited non-linear MDOF systems at parametric resonances
    Kniffka, T. J.
    Mace, B. R.
    Ecker, H.
    Halkyard, R.
    13TH INTERNATIONAL CONFERENCE ON MOTION AND VIBRATION CONTROL (MOVIC 2016) AND THE 12TH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN STRUCTURAL DYNAMICS (RASD 2016), 2016, 744
  • [26] ON THE STABILITY OF LINEAR NONCONSERVATIVE SYSTEMS
    KLIEM, W
    POMMER, C
    QUARTERLY OF APPLIED MATHEMATICS, 1986, 43 (04) : 459 - 463
  • [27] Active control of parametrically excited systems
    Tehrani, Maryam Ghandchi
    Kalkowski, Michal Krzysztof
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2016, 27 (09) : 1218 - 1230
  • [28] Forecasting bifurcations in parametrically excited systems
    Chen, Shiyang
    Epureanu, Bogdan
    NONLINEAR DYNAMICS, 2018, 91 (01) : 443 - 457
  • [29] Two parametrically excited chain systems
    Tondl, Aleš
    Acta Technica CSAV (Ceskoslovensk Akademie Ved), 2002, 47 (01): : 67 - 74
  • [30] Forecasting bifurcations in parametrically excited systems
    Shiyang Chen
    Bogdan Epureanu
    Nonlinear Dynamics, 2018, 91 : 443 - 457