EIGENFUNCTIONS OF THE FOKKER-PLANCK OPERATOR AND OF ITS ADJOINT

被引:0
|
作者
RYTER, D
机构
来源
HELVETICA PHYSICA ACTA | 1985年 / 58卷 / 05期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:927 / 927
页数:1
相关论文
共 50 条
  • [1] ON THE EIGENFUNCTIONS OF THE FOKKER-PLANCK OPERATOR AND OF ITS ADJOINT
    RYTER, D
    [J]. PHYSICA A, 1987, 142 (1-3): : 103 - 121
  • [2] Gyrokinetic Fokker-Planck Collision Operator
    Li, B.
    Ernst, D. R.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (19)
  • [3] SIMPLE DERIVATION OF FOKKER-PLANCK OPERATOR
    ENGELMANN, F
    AUDENAERDE, KR
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1977, 22 (09): : 1126 - 1126
  • [4] OSCILLATORY SURVIVAL PROBABILITY AND EIGENVALUES OF THE NON-SELF-ADJOINT FOKKER-PLANCK OPERATOR
    Holcman, D.
    Schuss, Z.
    [J]. MULTISCALE MODELING & SIMULATION, 2014, 12 (03): : 1294 - 1308
  • [5] Adjoint Fokker-Planck equation and runaway electron dynamics
    Liu, Chang
    Brennan, Dylan P.
    Bhattacharjee, Amitava
    Boozer, Allen H.
    [J]. PHYSICS OF PLASMAS, 2016, 23 (01)
  • [6] Perturbation theory for the Fokker-Planck operator in chaos
    Heninger, Jeffrey M.
    Lippolis, Domenico
    Cvitanovic, Predrag
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 55 : 16 - 28
  • [7] Operator solutions for fractional Fokker-Planck equations
    Gorska, K.
    Penson, K. A.
    Babusci, D.
    Dattoli, G.
    Duchamp, G. H. E.
    [J]. PHYSICAL REVIEW E, 2012, 85 (03):
  • [8] DISCRETIZATION OF THE FOKKER-PLANCK OPERATOR IN THE HOMOGENEOUS CASE
    LUCQUINDESREUX, B
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 314 (05): : 407 - 411
  • [9] The Fokker-Planck operator at a continuous phase transition
    Schwartz, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (27): : 7507 - 7515
  • [10] Compactness criteria for the resolvent of the Fokker-Planck operator
    Li, Wei-Xi
    [J]. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2018, 18 (01) : 119 - 143