SIMPLE DERIVATION OF FOKKER-PLANCK OPERATOR

被引:0
|
作者
ENGELMANN, F
AUDENAERDE, KR
机构
[1] FOM,INST PLASMAFYS,JUTPHAAS,NETHERLANDS
[2] UNIV WISCONSIN,MADISON,WI 53706
来源
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1126 / 1126
页数:1
相关论文
共 50 条
  • [1] On Derivation of Fokker-Planck Equation
    Tanatarov, L. V.
    [J]. METALLOFIZIKA I NOVEISHIE TEKHNOLOGII, 2013, 35 (01): : 95 - 111
  • [2] DERIVATION AND APPLICATION OF FOKKER-PLANCK EQUATION
    CAUGHEY, TK
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1962, 34 (12): : 2000 - &
  • [3] ON THE DERIVATION OF THE FOKKER-PLANCK EQUATION FOR A PLASMA
    TEMKO, SV
    [J]. SOVIET PHYSICS JETP-USSR, 1957, 4 (06): : 898 - 903
  • [4] SIMPLIFIED DERIVATION OF THE FOKKER-PLANCK EQUATION
    SIEGMAN, AE
    [J]. AMERICAN JOURNAL OF PHYSICS, 1979, 47 (06) : 545 - 547
  • [5] Gyrokinetic Fokker-Planck Collision Operator
    Li, B.
    Ernst, D. R.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (19)
  • [6] INFORMATION THEORETIC DERIVATION OF FOKKER-PLANCK EQUATION
    LEVINE, RD
    BERRONDO, M
    [J]. CHEMICAL PHYSICS LETTERS, 1977, 47 (03) : 399 - 403
  • [7] ON THE EIGENFUNCTIONS OF THE FOKKER-PLANCK OPERATOR AND OF ITS ADJOINT
    RYTER, D
    [J]. PHYSICA A, 1987, 142 (1-3): : 103 - 121
  • [8] EIGENFUNCTIONS OF THE FOKKER-PLANCK OPERATOR AND OF ITS ADJOINT
    RYTER, D
    [J]. HELVETICA PHYSICA ACTA, 1985, 58 (05): : 927 - 927
  • [9] Perturbation theory for the Fokker-Planck operator in chaos
    Heninger, Jeffrey M.
    Lippolis, Domenico
    Cvitanovic, Predrag
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 55 : 16 - 28
  • [10] Operator solutions for fractional Fokker-Planck equations
    Gorska, K.
    Penson, K. A.
    Babusci, D.
    Dattoli, G.
    Duchamp, G. H. E.
    [J]. PHYSICAL REVIEW E, 2012, 85 (03):