Compactness criteria for the resolvent of the Fokker-Planck operator

被引:0
|
作者
Li, Wei-Xi [1 ,2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
[2] Wuhan Univ, Computat Sci Hubei Key Lab, Wuhan 430072, Hubei, Peoples R China
关键词
EQUATION; HYPOELLIPTICITY; EQUILIBRIUM; TREND;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the spectral property of a Fokker-Planck operator with potential. By virtue of a multiplier method inspired by Nicolas Lerner, we obtain new compactness criteria for its resolvent, involving the control of the positive eigenvalues of the Hessian matrix of the potential.
引用
收藏
页码:119 / 143
页数:25
相关论文
共 50 条
  • [1] Global hypoellipticity and compactness of resolvent for Fokker-Planck operator
    Li, Wei-Xi
    [J]. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2012, 11 (04) : 789 - 815
  • [2] Gyrokinetic Fokker-Planck Collision Operator
    Li, B.
    Ernst, D. R.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (19)
  • [3] SIMPLE DERIVATION OF FOKKER-PLANCK OPERATOR
    ENGELMANN, F
    AUDENAERDE, KR
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1977, 22 (09): : 1126 - 1126
  • [4] ON THE EIGENFUNCTIONS OF THE FOKKER-PLANCK OPERATOR AND OF ITS ADJOINT
    RYTER, D
    [J]. PHYSICA A, 1987, 142 (1-3): : 103 - 121
  • [5] EIGENFUNCTIONS OF THE FOKKER-PLANCK OPERATOR AND OF ITS ADJOINT
    RYTER, D
    [J]. HELVETICA PHYSICA ACTA, 1985, 58 (05): : 927 - 927
  • [6] Perturbation theory for the Fokker-Planck operator in chaos
    Heninger, Jeffrey M.
    Lippolis, Domenico
    Cvitanovic, Predrag
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 55 : 16 - 28
  • [7] Operator solutions for fractional Fokker-Planck equations
    Gorska, K.
    Penson, K. A.
    Babusci, D.
    Dattoli, G.
    Duchamp, G. H. E.
    [J]. PHYSICAL REVIEW E, 2012, 85 (03):
  • [8] DISCRETIZATION OF THE FOKKER-PLANCK OPERATOR IN THE HOMOGENEOUS CASE
    LUCQUINDESREUX, B
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 314 (05): : 407 - 411
  • [9] The Fokker-Planck operator at a continuous phase transition
    Schwartz, M
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (27): : 7507 - 7515
  • [10] THEORY OF LINEAR FOKKER-PLANCK COLLISION OPERATOR
    SU, CH
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (02) : 248 - &