The Discrete Fourier Transform, Part 2: Radix 2 FFT

被引:1
|
作者
Lyon, Douglas [1 ,2 ,3 ]
机构
[1] AT&T Bell Labs, Murray Hill, NJ USA
[2] CALTECH, Jet Prop Lab, Pasadena, CA USA
[3] DocJava Inc, Milford, CT USA
来源
JOURNAL OF OBJECT TECHNOLOGY | 2009年 / 8卷 / 05期
关键词
D O I
10.5381/jot.2009.8.5.c2
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper is part 2 in a series of papers about the Discrete Fourier Transform (DFT) and the Inverse Discrete Fourier Transform (IDFT). The focus of this paper is on a fast implementation of the DFT, called the FFT (Fast Fourier Transform) and the IFFT (Inverse Fast Fourier Transform). The implementation is based on a well-known algorithm, called the Radix 2 FFT, and requires that its' input data be an integral power of two in length. Part 3 of this series of papers, demonstrates the computation of the PSD (Power Spectral Density) and applications of the DFT and IDFT. The applications include filtering, windowing, pitch shifting and the spectral analysis of re-sampling.
引用
收藏
页码:21 / 33
页数:13
相关论文
共 50 条
  • [31] Split-radix algorithm for 2-D discrete Hartley transform
    Bi, GA
    [J]. SIGNAL PROCESSING, 1997, 63 (01) : 45 - 53
  • [32] The Fourier transform (FFT) in basic.
    Constantino, MG
    da Silva, GVJ
    [J]. QUIMICA NOVA, 2000, 23 (03): : 413 - 417
  • [33] Implementation of Radix-2 and Split-Radix Fast Fourier Transform Algorithm Using Current Mirrors
    Balakrishnan, Arun A.
    Babu, V. Suresh
    Baiju, M. R.
    [J]. PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON CIRCUITS, POWER AND COMPUTING TECHNOLOGIES (ICCPCT 2013), 2013, : 730 - 735
  • [34] NEW RADIX-2 AND RADIX-22 CONSTANT GEOMETRY FAST FOURIER TRANSFORM ALGORITHMS FOR GPUS
    Ambuluri, Sreehari
    Garrido, Mario
    Caffarena, Gabriel
    Ogniewski, Jens
    Ragnemalm, Ingemar
    [J]. PROCEEDINGS OF THE IADIS INTERNATIONAL CONFERENCE ON COMPUTER GRAPHICS, VISUALIZATION, COMPUTER VISION AND IMAGE PROCESSING 2013, 2013, : 59 - 66
  • [35] Errors in FFT estimation of the Fourier transform
    Univ of Cape Town, Cape Town, South Africa
    [J]. IEEE Trans Signal Process, 8 (2073-2077):
  • [36] VECTOR-RADIX ALGORITHM FOR A 2-D DISCRETE HARTLEY TRANSFORM
    KUMARESAN, R
    GUPTA, PK
    [J]. PROCEEDINGS OF THE IEEE, 1986, 74 (05) : 755 - 757
  • [37] Fast Radix-2 Algorithm for the Discrete Hartley Transform of Type II
    Chiper, Doru Florin
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2011, 18 (11) : 687 - 689
  • [38] Dedicated memory accessing for radix-2×2 FFT
    Xie, Ying-Ke
    Hou, Zi-Feng
    Han, Cheng-De
    [J]. Jisuanji Xuebao/Chinese Journal of Computers, 2000, 23 (10): : 1051 - 1055
  • [39] The errors in FFT estimation of the Fourier transform
    Becker, RI
    Morrison, N
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (08) : 2073 - 2077
  • [40] The Discrete Fourier Transform, Part 6: Cross-Correlation
    Lyon, Douglas
    [J]. JOURNAL OF OBJECT TECHNOLOGY, 2010, 9 (02): : 17 - 22